Hero image

Spark Science

Average Rating4.50
(based on 16 reviews)

Spark Science provides high quality science educational resources for secondary school teachers.

55Uploads

24k+Views

23k+Downloads

Spark Science provides high quality science educational resources for secondary school teachers.
Formation of Crude Oil Storyboard
emily_k_brown1994emily_k_brown1994

Formation of Crude Oil Storyboard

(0)
A quick and simple student led activity designed for AQA GCSE Chemistry (Triple and Double award) explaining how crude oil is formed from plankton. Students should put the cartoon panels in the right order, then match the correct description to each panel. This can be a cut and stick activity or a numbering/line drawing activity. Good for SEN and students in need of visual cues and support. Resource download includes PDF and Editable Powerpoint versions.
GCSE Chemistry - Fuel Cells
emily_k_brown1994emily_k_brown1994

GCSE Chemistry - Fuel Cells

(0)
A 1-2 Lesson Resources on Hydrogen fuel cells, their uses, how they work and their advantages and disadvantages compared to petrol cars and electric cars. Lesson Objectives Describe, in basic terms, how a hydrogen fuel works (Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell Describe advantages and disadvantages of hydrogen fuel cells Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles Lesson resources include: Lesson powerpoint with printable diagrams for students Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them Relevant video links 6 marker question and mark scheme Exam question pack on fuel cells and energy Plenary AFL multiple choice quiz and debate activity
Electrochemical Cells
emily_k_brown1994emily_k_brown1994

Electrochemical Cells

(0)
Preview video of resources: https://youtu.be/WWaqwYbo6IY A pair of GCSE Chemistry Lessons for Triple Science covering electrochemical cells and associated half equations. Lesson 1: What are Electrochemical Cells? Lesson Objectives: Describe what an electrochemical cell is and what we use it for Describe how to make an electrochemical cell Identify factors which affect the size of the voltage produced by an electrochemical cell This lesson contains: Lesson powerpoint Student practical investigation Teacher notes on how to deliver lesson slides/content and answers Lesson 2: How do Electrochemical Cells Work? Lesson Objectives: Recall the definitions for oxidation and reduction Identify which elements are oxidised and reduced in an electrochemical cell (H) – write half equations for oxidation and reduction taking place in electrochemical cells Explain why alkaline/non-rechargeable batteries eventually stop working This lesson contains: Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it Student exam questions (23 marks worth) from AQA syllabus with mark scheme Teacher notes on how to deliver lesson slides/content and answers
Lesson 2 - How Electrolysis Works
emily_k_brown1994emily_k_brown1994

Lesson 2 - How Electrolysis Works

(0)
This lesson is designed for AQA combined and triple chemistry. This lesson builds on the previous lesson (Introduction to Electrolysis) where students looked at the basic set up for electrolysis and predicted which ion would be attracted to which electrode and why. This lesson introduces the keywords anode, cathode, anion, cation, as well describing if ions gain or lose electrons at an electrode and are oxidised/reduced. **Lesson Objectives: ** Identify anions and cations Explain the movement of metal and non-metal ions to the anode and cathode Describe and explain what happens to ions at the anode and cathode Identify if an element is being oxidised or reduced at the electrode This Lesson Contains: Complete lesson powerpoint with teaching guidance in notes section, complete answers for all tasks, mini-whiteboard AFL assessment quizzes, animations to describe the movement of ions and the gain or loss of electrons in electrolysis A printable cheat sheet for students explaining definitions and which ion is attracted to which electrode (editable and PDF)
Lesson 1 - Introduction to Electrolysis
emily_k_brown1994emily_k_brown1994

Lesson 1 - Introduction to Electrolysis

(0)
This lesson is designed for AQA GCSE Chemistry and introduces electrolysis as a way of extracting metals from ores/metal compounds. Lesson Objectives: Name the parts of the electrolysis practical Carry out a basic practical for the electrolysis of copper chloride Predict the products of the electrolysis of a molten salt Explain why we use electrolysis to extract metals This Lesson Contains: Lesson Powerpoint, including all answers and powerpoint notes to aid delivery and challenge tasks and mini-whiteboard AFL quiz Blank electrolysis diagram handout for printing (editable and PDF) Student worksheet/table (editable and PDF) Complete answers Practical risk assessment and instructions
Extracting Aluminium from Aluminium Oxide
emily_k_brown1994emily_k_brown1994

Extracting Aluminium from Aluminium Oxide

(0)
A full lesson designed for GCSE chemistry AQA specification. This lesson covers the case study of the extraction of aluminium oxide, the role of cryolite, what happens to the aluminium and oxide ions at the electrodes, and the need for the replacement of the positive electrode. This lesson contains A lesson powerpoint including all useful youtube video links, interactive plenary multiple choice quiz, electroplating challenge task and complete answers. A guided reading activity with quesitons and complete answer sheet (PDF and editable versions) An alternative information hunt sheet to be used with videos and/or the AQA GCSE Chemistry textbook, with complete answers (PDF and editable versions) Video clip to aid in completion of both sheets Lesson Objectives State two reasons why extracting aluminium oxide from its ore is expensive Describe why cryolite is added to aluminium oxide during electrolysis Describe and explain what happens to ions at the positive and negative electrode (and give relevant half equations (Higher only)) Explain why the positive electrode must continually be replaced
Testing for Positive Metal Ions
emily_k_brown1994emily_k_brown1994

Testing for Positive Metal Ions

(0)
A 1-2 lesson pack covering flame tests and positive metal ion tests. This resource is designed for the AQA Triple Chemistry required practical from “Chemical Analysis”, and is relevant to higher and foundation students. Lesson Objectives Carry out simple flame tests to identify positive metal ions Carry out simple precipitate tests to identify positive metal ions Describe how to carry out a flame test and a precipitate test, including the names of any important reactants Describe the problems and limitations of using flame tests and precipitate tests to identify positive metal ions This resource contains: Lesson powerpoint - including starter activity, practical instructions, tables, challenge task, multiple choice quiz plenary, and full answers Student worksheet - including practical instructions, tables, and practical quesitons (PDF and editable word versions) Student worksheet answers (PDF and editable word versions) Risk assessment/order form - containing up to date CLEAPPS guidance as of Oct 2023.
Testing for Negative Non-Metal Ions
emily_k_brown1994emily_k_brown1994

Testing for Negative Non-Metal Ions

(0)
A lesson pack covering negative non-metal ion tests (halide, sulfate and carbonate). This resource is designed for the AQA Triple Chemistry required practical from “Chemical Analysis”, and is relevant to higher and foundation students. Lesson Objectives Carry out simple precipitate tests to identify halide, sulfate and carbonate ions Describe how to carry out precipitate tests to test for halide, sulfate and carbonate ions, including the names of any important reactants Write balanced symbol and ionic equations for the reactions taking place in precipitation reactions This resource contains: Lesson powerpoint - including starter activity, practical instructions, tables, challenge task, multiple choice quiz plenary, and full answers Student worksheet - including practical instructions, tables, and practical quesitons (PDF and editable word versions) Student worksheet answers (PDF and editable word versions) Risk assessment/order form - containing up to date CLEAPPS guidance as of Oct 2023.
Calculating Percentage by Mass
emily_k_brown1994emily_k_brown1994

Calculating Percentage by Mass

(0)
A fully resourced lesson for GCSE AQA chemistry on calculating percentage by mass. Suitable and applicable for GCSE Chemistry Trilogy, and Combined Science Higher and Foundation. Lesson Objectives Recall how to calculate relative formula mass using a periodic table Calculate the percentage by mass of an element in a substance using masses Calculate the percentage by mass of an element in a substance using relative formula mass and atomic mass Lesson includes: Lesson powerpoint (including instructions on lesson activities, equipment to order, slide answers) Student practical Student worksheet (PDF and editable word versions) Student worksheet answers (PDF and editable word versions)
Calculating Relative Formulas Mass
emily_k_brown1994emily_k_brown1994

Calculating Relative Formulas Mass

(0)
A full lesson covering how students can calculate relative formula mass. This lesson is suitable for students studying AQA Trilogy Combined Science (higher and foundation) and AQA Triple chemistry (higher and foundation) Lesson Objectives Recall how to count the number of atoms in a formula Recall what relative atomic mass is Define what relative formula mass is Calculate the relative formula mass of a chemical using a periodic table Lesson includes Lesson powerpoint - including recap of how to count atoms in a formula an how to find relative atomic mass on a periodic table, worked examples with answers, and BINGO plenary practice game Optional worksheet with answers (PDF and editable word version)
Electrochemical Cells and Fuel Cells Bundle
emily_k_brown1994emily_k_brown1994

Electrochemical Cells and Fuel Cells Bundle

2 Resources
This bundle contains the lessons, powerpoints and all relevant resources for teaching the Separate Science GCSE Chemistry AQA content on electrochemical cells and fuel cells. This bundle contains 3-4 lessons of content including: Lesson 1: What are Electrochemical Cells? Lesson Objectives: Describe what an electrochemical cell is and what we use it for Describe how to make an electrochemical cell Identify factors which affect the size of the voltage produced by an electrochemical cell This lesson contains: Lesson powerpoint Student practical investigation Teacher notes on how to deliver lesson slides/content and answers Lesson 2: How do Electrochemical Cells Work? Lesson Objectives: Recall the definitions for oxidation and reduction Identify which elements are oxidised and reduced in an electrochemical cell (H) – write half equations for oxidation and reduction taking place in electrochemical cells Explain why alkaline/non-rechargeable batteries eventually stop working This lesson contains: Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it Student exam questions (23 marks worth) from AQA syllabus with mark scheme Teacher notes on how to deliver lesson slides/content and answers Lesson 3/4: What are Fuel Cells? Lesson Objectives: Describe, in basic terms, how a hydrogen fuel works (Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell Describe advantages and disadvantages of hydrogen fuel cells Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles Lesson resources include: Lesson powerpoint with printable diagrams for students Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them Relevant video links 6 marker question and mark scheme Exam question pack on fuel cells and energy Plenary AFL multiple choice quiz and debate activity
GCSE Triple Chemistry: Chemical Analysis
emily_k_brown1994emily_k_brown1994

GCSE Triple Chemistry: Chemical Analysis

3 Resources
This bundle contains all the content relevant to AQA Triple Chemistry students in the new 9-1 syllabus. Includes 4 LESSONS worth of teaching materials: This includes the standard tests and characteristic results/colour changes for: positive metal ion flame tests (Li, Cu, K, Na, Ca), positive metal ion precipitate tests with NaOH (Fe(III), Fe(II), Cu(II), Mg, Ca, Al) sulfate test with barium nitrate/chloride halide tests (Cl, Br and I) with silver nitrate carbonate tests with dilute acid and lime water These lessons contain full powerpoints, student worksheets, complete answers, risk assessments/technician order forms, stretch and challenge tasks, relevant exam questions, and AfL plenary activities Lesson 1-2: Identifying positive metal ions (flame tests and precipitate tests) Lesson objectives: Carry out simple flame tests to identify positive metal ions Carry out simple precipitate tests to identify positive metal ions Describe how to carry out a flame test and a precipitate test, including the names of any important reactants Describe the problems and limitations of using flame tests and precipitate tests to identify positive metal ions Lesson 3 - Identifying negative non-metal ions Lesson objectives: Carry out simple precipitate tests to identify halide, sulfate and carbonate ions Describe how to carry out precipitate tests to test for halide, sulfate and carbonate ions, including the names of any important reactants Write balanced symbol and ionic equations for the reactions taking place in precipitation reactions Lesson 4 - Instrumental Analysis and Flame Emission Spectra Lesson objectives: Know what instrumental techniques are Describe advantages and disadvantages of instrumental techniques over other analysis techniques (e.g. flame tests) Interpret flame emission spectra to identify unknown elements in a mixture Lesson resources include: Complete and full powerpoints - including starter activities, challenge activities, tables of results, practical instructions, questions with complete answers Student worksheets and practical sheets with instructions and tables for results (PDF and editable word versions) Student worksheet answers (PDF and editable word versions) Practical risk assessments/order forms (up to date with CLEAPPS data as of Oct 2023) Relevant practice exam questions with mark schemes and examiners reports.
KS3 - Elements, Compounds and Mixtures Bundle
emily_k_brown1994emily_k_brown1994

KS3 - Elements, Compounds and Mixtures Bundle

5 Resources
A comprehensive, complete, engaging and challenging set of lessons and activities to teach students the basics of elements, compounds, mixtures and chemical formulas. This scheme/package is designed with non-science/non-chemistry specialist teachers in mind! Lessons included in this bundle: Elements and Compounds Chemical Formulas Counting atoms in a Formula Pure Substances Mixtures Included in each lesson: Lesson powerpoint - including teacher notes and answers in “notes” section Student-led lesson worksheet Teacher answer sheet Lesson resources contain: In-built stretch and challenge tasks throughout In-built scaffolded learning for lower abilities Various AFL activities to assess progress and understanding that you can tailor to fit any class or available resources (these include “think, pair, share”, molymod activities, mini-whiteboard quizzes) Relevant risk assessments for any practical work (updated as of March 2023) By the end of the topic, students will: Know what an “element” and a “compound” is Describe the difference between an element and a compound Know what an “atom” and a “molecule” are Describe the difference between an atom and a molecule Draw/make particle diagrams and models to represent elements, compounds, single atoms and molecules Understand why scientists use chemical symbols to represent elements Identify simple elements from their chemical symbols Identify elements in a chemical formula Classify chemical formulas as elements or compounds Count the number of atoms in a basic formula Identify elements in a chemical formula Count the number of atoms in formulas containing subscripts Count the number of atoms in formulas containing multipliers Describe what a pure substance is Identify examples of pure substances in everyday life Identify pure substances from particle diagrams and examples Carry out a practical investigation to identify pure substances Describe what a mixture is Give examples of mixtures in everyday life Identify mixtures from particle diagrams and examples Draw/make models representing mixtures
KS3 Biology - Cells Topic
emily_k_brown1994emily_k_brown1994

KS3 Biology - Cells Topic

6 Resources
This bundle is a complete topic pack containing all powerpoints, student worksheets, risk assessments, stretch and challenge tasks, and answer sheets for the Biology topic “Cells”. It also contains many student-led activities on the powerpoints (particularly designed to make the learning of parts and functions of cells easier, more fun and student-led), plenary activities, and reading and literacy tasks (for specialised cells and unicellular organisms) Bundle includes: Lesson 1: Observing cells with a microscope Lesson 2: Animal Cells Lesson 3: Plant Cells Lesson 4: Specialised Cells Lesson 5: Movement of Substances (diffusion) in and out of cells Lesson 6: Unicellular Organisms (focusing on euglena and amoeba) Lesson Objectives: Lesson 1: Observing Cells Name the parts of a microscope Describe how to use a microscope to observe very small objects Calculate the total magnification used to observe an object View and focus objects under a microscope Lesson 2: Animal Cells State what a cell is Name the different parts of an animal cell Describe the function of each part of an animal cell Use a Microscope to view animal cells (cheek cells) Lesson 3: Plant Cells Identify parts of a plant cell from a diagram Describe the function of each part of a plant cell Compare the similarities and difference between an animal and plant cell Use a microscope to view plant cells (pond weed) Lesson 4: Specialised Cells Know what a specialised cell and an adaptation is Give some examples of specialised cells Identify and describe the adaptations of some specialised cells Explain how an adaptation makes a specialised cell good at its function Lesson 5: Movement of Substances in and out of cells Name some substances that move into and out of cells Describe the process of diffusion Describe examples of diffusion in cells **Lesson 6: Unicellular Organisms ** Know what a unicellular organism is Name 2 examples of unicellular organisms Describe the features of an amoeba Describe the features of an euglena
KS3 - Levels of Organisation
emily_k_brown1994emily_k_brown1994

KS3 - Levels of Organisation

7 Resources
This bundle is a complete topic pack containing all powerpoints, student worksheets, risk assessments, stretch and challenge tasks, and answer sheets for the Biology topic “Levels of Organisation”. It also contains many student-led activities on the powerpoints (particularly designed to make the learning of parts and functions of organs/joints etc… easier, more fun and student-led), plenary activities. There are also interactive slides to demonstrate concepts (e.g. gas exchange) as well as self-completing slides where answers can be clicked and move into the correct place (great for distance learning students and cover lessons). Bundle includes: Lesson 1: Tissues and Organs Lesson 2: Organ Systems Lesson 3: Gas Exchange Lesson 4: Breathing Lesson 5: The Skeleton Lesson 6: Joints Lesson 7: Muscles Lesson Objectives: Lesson 1: Tissues and Organs Define the terms “tissue” and “organ” Identify some of the key organs in the human body Identify some of the key organs in plants Describe what some key organs do Lesson 2: Organ Systems Define the term “organ system” Identify some of the key organ systems in the human body and what they do Describe the hierarchy of organisation in a multicellular organism Lesson 3: Gas Exchange Name the key parts of the lungs Define the process of gas exchange Describe how parts of the gas exchange system are adapted to their function Compare inhaled and exhaled air WS: Read data from pie charts and draw conclusions Lesson 4: Breathing Describe the physical changes that occur when a person inhales and exhales Describe a method used to estimate lung volume WS: Measure lung volume WS: Correlate and analyse data from a practical experiment to draw conclusions Lesson 5: The Skeleton Label some of the main bones in the skeleton Describe the structure of a bone Describe the functions of the skeletal system Lesson 6: Joints Name and give examples of the types of joint found in the human body Describe the role of joints in movement Label the structure of a joint Carry out the dissection of a joint Lesson 7: Muscles Describe what a muscle is and give some examples Describe how muscles cause movement in the body Describe how antagonistic muscles control movement at a joint WS: Investigate the strength of muscles