Spark Science provides high quality science educational resources for secondary school teachers.
From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
Spark Science provides high quality science educational resources for secondary school teachers.
From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
This lesson is designed for AQA combined and triple chemistry.
This lesson builds on the previous lesson (Introduction to Electrolysis) where students looked at the basic set up for electrolysis and predicted which ion would be attracted to which electrode and why.
This lesson introduces the keywords anode, cathode, anion, cation, as well describing if ions gain or lose electrons at an electrode and are oxidised/reduced.
**Lesson Objectives: **
Identify anions and cations
Explain the movement of metal and non-metal ions to the anode and cathode
Describe and explain what happens to ions at the anode and cathode
Identify if an element is being oxidised or reduced at the electrode
This Lesson Contains:
Complete lesson powerpoint with teaching guidance in notes section, complete answers for all tasks, mini-whiteboard AFL assessment quizzes, animations to describe the movement of ions and the gain or loss of electrons in electrolysis
A printable cheat sheet for students explaining definitions and which ion is attracted to which electrode (editable and PDF)
This lesson is designed for AQA GCSE Chemistry and introduces electrolysis as a way of extracting metals from ores/metal compounds.
Lesson Objectives:
Name the parts of the electrolysis practical
Carry out a basic practical for the electrolysis of copper chloride
Predict the products of the electrolysis of a molten salt
Explain why we use electrolysis to extract metals
This Lesson Contains:
Lesson Powerpoint, including all answers and powerpoint notes to aid delivery and challenge tasks and mini-whiteboard AFL quiz
Blank electrolysis diagram handout for printing (editable and PDF)
Student worksheet/table (editable and PDF)
Complete answers
Practical risk assessment and instructions
This is a Year 7 lesson that covers plant cells, their components, their functions, how they differ to animal cells, and how to observe plant cells under a microscope.
This Lesson Contains
Lesson powerpoint with complete answers, plenary activity, interactive game for teaching rote learning of parts of the plant cell, challenge task, practical follow up questions
Student worksheet and complete and incomplete versions with answers (PDF and editable versions)
Practical instructions
Practical risk assessment (PDF and editable word versions)
Lesson Objectives
Identify parts of a plant cell from a diagram
Describe the function of each part of a plant cell
Compare the similarities and difference between an animal and plant cell
Use a microscope to view plant cells (pond weed)
This lesson covers the KS3 basics of animal cells, including their basic structure, the function of each part of the animal cell, and how to observe animal cells (cheek cells) under a microscope.
This Lesson Includes
Lesson powerpoint with full answers, guidance for teachers in delivery and engaging activities designed for EAL and AEN students, interactive plenary multiple choice quiz, challenge tasks for higher ability students
Practical order form/risk assessment
CLEAPPS Guidance on practical completion
Student key note/worksheet (PDF and Editable word versions)
Student worksheet answers (PDF and Editable word versions)
Lesson objectives
State what a cell is
Name the different parts of an animal cell
Describe the function of each part of an animal cell
Use a microscope to view animal cells (cheek cells)
This complete lesson teaches students the parts of the microscope, how to use one, what they’re used for, and how to calculate magnification.
This lesson contains:
Complete lesson powerpoint, including mini-whiteboard AFL tasks for calculating magnification and full answers
Student handout sheet (with and without hints for AEN students)
Plenary task
Lesson Objectives
Name the parts of a microscope
Describe how to use a microscope to observe very small objects
Calculate the total magnification used to observe an object
View and focus objects under a microscope
This lesson covers examples of specialised cells, their adaptations and how those adaptations make them suited for their function.
**This lesson resource includes: **
Complete lesson powerpoint
Student led circus investigation task sheet (PDF and editable versions)
Answer sheet (PDF and editable versions)
Information cards for task on different specialised cells (PDF and editable versions)
Automatically checking multiple choice plenary quiz (great for mini-whiteboard AFL)
Lesson Objectives
Know what a specialised cell and an adaptation is
Give some examples of specialised cells
Identify and describe the adaptations of some specialised cells
Explain how an adaptation makes a specialised cell good at its function
A full lesson resource teaching students how to use the periodic table (mass number and atomic number) to count the numbers of subatomic particles in an atom. This lesson also covers the definition of “isotopes”. This lesson also dual codes this information with atomic diagrams and periodic table squares to cement student understanding of where these numbers come from, while also being a great support for EAL and SEN students. Great for “I do, we do, you do” activities and can be easily added to and extended if more examples and practice are needed by a given class.
Lesson contains:
Lesson powerpoint, including whole class whiteboard AFL activities, core hinge/thinking questions, full answers and notes to aid in lesson delievery and structure
Student worksheet
Exam style questions with mark scheme
Lesson Objectives:
Know what the numbers on the periodic table mean
Use the periodic table to count the numbers of protons, neutrons and electrons in an atom
Predict atomic number and mass number from the numbers of subatomic particles
Define the term “isotope” and identify examples of them
A full lesson outlining the basic GCSE structure of the atom, the position and charges of the subatomic particles inside it. A part of the course which is sometimes difficult to teach in a fun and interactive/discovery based way, this lesson will help students to discover information and make connections themselves. Students will hopefully not only learn the charges and masses and positions of subatomic particles, but gain an appreciation of scale and relative mass, as well as understand some of the reasons behind the structure of the atom and the reason we draw it the way we do.
This lesson includes:
Powerpoint - including key notes, delivery tips, modelling ideas, interactive class activities and key hinge/get-them-thinking questions, tips on dealing with common misconceptions
Multiple choice interactive plenary activity
Full answers
Lesson Objectives
Describe what a subatomic particle is
Describe the structure of an atom in terms of subatomic particles
Give the positions, relative mass and charge of the three subatomic particles
This bundle contains all the content relevant to AQA Triple Chemistry students in the new 9-1 syllabus.
Includes 4 LESSONS worth of teaching materials:
This includes the standard tests and characteristic results/colour changes for:
positive metal ion flame tests (Li, Cu, K, Na, Ca),
positive metal ion precipitate tests with NaOH (Fe(III), Fe(II), Cu(II), Mg, Ca, Al)
sulfate test with barium nitrate/chloride
halide tests (Cl, Br and I) with silver nitrate
carbonate tests with dilute acid and lime water
These lessons contain full powerpoints, student worksheets, complete answers, risk assessments/technician order forms, stretch and challenge tasks, relevant exam questions, and AfL plenary activities
Lesson 1-2: Identifying positive metal ions (flame tests and precipitate tests)
Lesson objectives:
Carry out simple flame tests to identify positive metal ions
Carry out simple precipitate tests to identify positive metal ions
Describe how to carry out a flame test and a precipitate test, including the names of any important reactants
Describe the problems and limitations of using flame tests and precipitate tests to identify positive metal ions
Lesson 3 - Identifying negative non-metal ions
Lesson objectives:
Carry out simple precipitate tests to identify halide, sulfate and carbonate ions
Describe how to carry out precipitate tests to test for halide, sulfate and carbonate ions, including the names of any important reactants
Write balanced symbol and ionic equations for the reactions taking place in precipitation reactions
Lesson 4 - Instrumental Analysis and Flame Emission Spectra
Lesson objectives:
Know what instrumental techniques are
Describe advantages and disadvantages of instrumental techniques over other analysis techniques (e.g. flame tests)
Interpret flame emission spectra to identify unknown elements in a mixture
Lesson resources include:
Complete and full powerpoints - including starter activities, challenge activities, tables of results, practical instructions, questions with complete answers
Student worksheets and practical sheets with instructions and tables for results (PDF and editable word versions)
Student worksheet answers (PDF and editable word versions)
Practical risk assessments/order forms (up to date with CLEAPPS data as of Oct 2023)
Relevant practice exam questions with mark schemes and examiners reports.
A lesson covering instrumental analysis and flame emission spectroscopy for the AQA Triple Chemistry GCSE specficiation. Applicable to both higher and foundation candidates.
Lesson Objectives
Know what instrumental techniques are
Describe advantages and disadvantages of instrumental techniques over other analysis techniques (e.g. flame tests)
Interpret flame emission spectra to identify unknown elements in a mixture
Lesson Resources include:
Lesson powerpoint - including starter, example spectra, spectra analysis example and advantages/disadvantages task
Exam questions covering instrumental analysis, flame spectra analysis, and ion identification questions with full mark schemes.
A lesson pack covering negative non-metal ion tests (halide, sulfate and carbonate).
This resource is designed for the AQA Triple Chemistry required practical from “Chemical Analysis”, and is relevant to higher and foundation students.
Lesson Objectives
Carry out simple precipitate tests to identify halide, sulfate and carbonate ions
Describe how to carry out precipitate tests to test for halide, sulfate and carbonate ions, including the names of any important reactants
Write balanced symbol and ionic equations for the reactions taking place in precipitation reactions
This resource contains:
Lesson powerpoint - including starter activity, practical instructions, tables, challenge task, multiple choice quiz plenary, and full answers
Student worksheet - including practical instructions, tables, and practical quesitons (PDF and editable word versions)
Student worksheet answers (PDF and editable word versions)
Risk assessment/order form - containing up to date CLEAPPS guidance as of Oct 2023.
A 1-2 lesson pack covering flame tests and positive metal ion tests.
This resource is designed for the AQA Triple Chemistry required practical from “Chemical Analysis”, and is relevant to higher and foundation students.
Lesson Objectives
Carry out simple flame tests to identify positive metal ions
Carry out simple precipitate tests to identify positive metal ions
Describe how to carry out a flame test and a precipitate test, including the names of any important reactants
Describe the problems and limitations of using flame tests and precipitate tests to identify positive metal ions
This resource contains:
Lesson powerpoint - including starter activity, practical instructions, tables, challenge task, multiple choice quiz plenary, and full answers
Student worksheet - including practical instructions, tables, and practical quesitons (PDF and editable word versions)
Student worksheet answers (PDF and editable word versions)
Risk assessment/order form - containing up to date CLEAPPS guidance as of Oct 2023.
A full lesson covering how students can calculate relative formula mass.
This lesson is suitable for students studying AQA Trilogy Combined Science (higher and foundation) and AQA Triple chemistry (higher and foundation)
Lesson Objectives
Recall how to count the number of atoms in a formula
Recall what relative atomic mass is
Define what relative formula mass is
Calculate the relative formula mass of a chemical using a periodic table
Lesson includes
Lesson powerpoint - including recap of how to count atoms in a formula an how to find relative atomic mass on a periodic table, worked examples with answers, and BINGO plenary practice game
Optional worksheet with answers (PDF and editable word version)
A fully resourced lesson for GCSE AQA chemistry on calculating percentage by mass.
Suitable and applicable for GCSE Chemistry Trilogy, and Combined Science Higher and Foundation.
Lesson Objectives
Recall how to calculate relative formula mass using a periodic table
Calculate the percentage by mass of an element in a substance using masses
Calculate the percentage by mass of an element in a substance using relative formula mass and atomic mass
Lesson includes:
Lesson powerpoint (including instructions on lesson activities, equipment to order, slide answers)
Student practical
Student worksheet (PDF and editable word versions)
Student worksheet answers (PDF and editable word versions)
A lesson resource for teaching the possible applications, advantages and disadvantages of nanoparticles and nanotechnology.
Lesson/Resource Outcomes:
State possible uses of nanoparticles
Describe advantages of using nanoparticles
Describe some of the possible risks of using nanoparticles
Resource contains
Student worksheet (pdf and word doc)
Complete answer sheet (pdf and word doc)
5 A4/A3 printable information/newspaper article sheets (Reading level 3-4) on the uses of nanoparticles in medicine, electronics, cosmetics, clothing and catalysts
Exam question set on nanotechnology & mark schemes
A 1-2 Lesson Resources on Hydrogen fuel cells, their uses, how they work and their advantages and disadvantages compared to petrol cars and electric cars.
Lesson Objectives
Describe, in basic terms, how a hydrogen fuel works
(Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell
Describe advantages and disadvantages of hydrogen fuel cells
Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles
Lesson resources include:
Lesson powerpoint with printable diagrams for students
Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them
Relevant video links
6 marker question and mark scheme
Exam question pack on fuel cells and energy
Plenary AFL multiple choice quiz and debate activity
Preview video of resources: https://youtu.be/WWaqwYbo6IY
A pair of GCSE Chemistry Lessons for Triple Science covering electrochemical cells and associated half equations.
Lesson 1: What are Electrochemical Cells?
Lesson Objectives:
Describe what an electrochemical cell is and what we use it for
Describe how to make an electrochemical cell
Identify factors which affect the size of the voltage produced by an electrochemical cell
This lesson contains:
Lesson powerpoint
Student practical investigation
Teacher notes on how to deliver lesson slides/content and answers
Lesson 2: How do Electrochemical Cells Work?
Lesson Objectives:
Recall the definitions for oxidation and reduction
Identify which elements are oxidised and reduced in an electrochemical cell
(H) – write half equations for oxidation and reduction taking place in electrochemical cells
Explain why alkaline/non-rechargeable batteries eventually stop working
This lesson contains:
Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it
Student exam questions (23 marks worth) from AQA syllabus with mark scheme
Teacher notes on how to deliver lesson slides/content and answers
A quick and simple student led activity designed for AQA GCSE Chemistry (Triple and Double award) explaining how crude oil is formed from plankton.
Students should put the cartoon panels in the right order, then match the correct description to each panel.
This can be a cut and stick activity or a numbering/line drawing activity.
Good for SEN and students in need of visual cues and support.
Resource download includes PDF and Editable Powerpoint versions.
A comprehensive, engaging, challenging and interactive lesson package designed with AEN students and non-science/non-chemistry specialist teachers in mind!
This lesson contains:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student led lesson worksheet
Teacher answer sheet
Practical and Demonstration Risk Assessments
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
AFL activities to assess progress and understanding that you can tailor to fit any class or available resources
Objectives:
Students will be able to…
Predict whether a chemical reaction under given conditions will get lighter, heavier or stay the same mass
Explain why some chemical reactions might appear to get lighter
Explain why some chemical reactions might appear to get heavier
This lesson contains a student led lesson sheet, with the focus being on students learning through doing, practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.
A comprehensive, engaging, challenging and interactive lesson package designed with AEN students and non-science/non-chemistry specialist teachers in mind!
This lesson contains:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student led lesson worksheet
Teacher answer sheet
Lesson resources contain:
In-built challenge tasks throughout
In-built scaffolded learning for lower abilities
AFL activities to assess progress and understanding that you can tailor to fit any class or available resources
Objectives:
Students will be able to…
Define the law of conservation of mass
Explain why the mass of a chemical reaction does not change in a closed system
Predict/calculate the mass of reactants and products in a chemical reaction when given the masses of the other reactants/products
This lesson contains a student led lesson sheet, with the focus being on students learning through doing and practicing skills and identifying patterns and reasons themselves. Resources and slides ask students the key questions and develops ideas and concepts from the ground up and address common issues, mistakes and misconceptions.