Spark Science provides high quality science educational resources for secondary school teachers.
From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
Spark Science provides high quality science educational resources for secondary school teachers.
From dual-coding, literacy and reading tasks, dyslexic friendly backgrounds, and continual Assessment for Learning (AfL) tasks embedded into all our lessons, Spark lessons will increase engagement, participation and understanding for your students.
This lesson is lesson 6 in the Year 8 “Working as a Scientist 2” topic.
This lesson focuses on how we communicate science to different audiences, and how we can tailor our writing and presentation of information to suit them.
This lesson is designed to be a “click and teach” lesson with minimal planning needed from the teacher, which is great for non-specialist teachers.
Lesson resources contain:
Lesson powerpoint containing class activities and instructions, teacher delivery notes in “notes” section, discussion slides and full answers.
PDF copies of different types of scientific communication (A childrens science book, newspaper article and scientific journal article) all about melting ice caps.
PDF copy of a simple scientific journal article for students to adapt about the effects of temperature on seed germination (Students should have already looked at germination in Year 7)
NOTE: All example pieces of scientific writing are all tailor made for this lesson and are of the correct reading age for Year 8 students.
Lesson Outcomes:
Describe the key features of effective scientific communication
Describe how to adapt communication for different audiences
This lesson is designed for AQA GCSE Chemistry and introduces electrolysis as a way of extracting metals from ores/metal compounds.
Lesson Objectives:
Name the parts of the electrolysis practical
Carry out a basic practical for the electrolysis of copper chloride
Predict the products of the electrolysis of a molten salt
Explain why we use electrolysis to extract metals
This Lesson Contains:
Lesson Powerpoint, including all answers and powerpoint notes to aid delivery and challenge tasks and mini-whiteboard AFL quiz
Blank electrolysis diagram handout for printing (editable and PDF)
Student worksheet/table (editable and PDF)
Complete answers
Practical risk assessment and instructions
This lesson is designed for AQA combined and triple chemistry.
This lesson builds on the previous lesson (Introduction to Electrolysis) where students looked at the basic set up for electrolysis and predicted which ion would be attracted to which electrode and why.
This lesson introduces the keywords anode, cathode, anion, cation, as well describing if ions gain or lose electrons at an electrode and are oxidised/reduced.
**Lesson Objectives: **
Identify anions and cations
Explain the movement of metal and non-metal ions to the anode and cathode
Describe and explain what happens to ions at the anode and cathode
Identify if an element is being oxidised or reduced at the electrode
This Lesson Contains:
Complete lesson powerpoint with teaching guidance in notes section, complete answers for all tasks, mini-whiteboard AFL assessment quizzes, animations to describe the movement of ions and the gain or loss of electrons in electrolysis
A printable cheat sheet for students explaining definitions and which ion is attracted to which electrode (editable and PDF)
A full lesson designed for GCSE chemistry AQA specification.
This lesson covers the case study of the extraction of aluminium oxide, the role of cryolite, what happens to the aluminium and oxide ions at the electrodes, and the need for the replacement of the positive electrode.
This lesson contains
A lesson powerpoint including all useful youtube video links, interactive plenary multiple choice quiz, electroplating challenge task and complete answers.
A guided reading activity with quesitons and complete answer sheet (PDF and editable versions)
An alternative information hunt sheet to be used with videos and/or the AQA GCSE Chemistry textbook, with complete answers (PDF and editable versions)
Video clip to aid in completion of both sheets
Lesson Objectives
State two reasons why extracting aluminium oxide from its ore is expensive
Describe why cryolite is added to aluminium oxide during electrolysis
Describe and explain what happens to ions at the positive and negative electrode (and give relevant half equations (Higher only))
Explain why the positive electrode must continually be replaced
A 1-2 lesson pack covering flame tests and positive metal ion tests.
This resource is designed for the AQA Triple Chemistry required practical from “Chemical Analysis”, and is relevant to higher and foundation students.
Lesson Objectives
Carry out simple flame tests to identify positive metal ions
Carry out simple precipitate tests to identify positive metal ions
Describe how to carry out a flame test and a precipitate test, including the names of any important reactants
Describe the problems and limitations of using flame tests and precipitate tests to identify positive metal ions
This resource contains:
Lesson powerpoint - including starter activity, practical instructions, tables, challenge task, multiple choice quiz plenary, and full answers
Student worksheet - including practical instructions, tables, and practical quesitons (PDF and editable word versions)
Student worksheet answers (PDF and editable word versions)
Risk assessment/order form - containing up to date CLEAPPS guidance as of Oct 2023.
A lesson pack covering negative non-metal ion tests (halide, sulfate and carbonate).
This resource is designed for the AQA Triple Chemistry required practical from “Chemical Analysis”, and is relevant to higher and foundation students.
Lesson Objectives
Carry out simple precipitate tests to identify halide, sulfate and carbonate ions
Describe how to carry out precipitate tests to test for halide, sulfate and carbonate ions, including the names of any important reactants
Write balanced symbol and ionic equations for the reactions taking place in precipitation reactions
This resource contains:
Lesson powerpoint - including starter activity, practical instructions, tables, challenge task, multiple choice quiz plenary, and full answers
Student worksheet - including practical instructions, tables, and practical quesitons (PDF and editable word versions)
Student worksheet answers (PDF and editable word versions)
Risk assessment/order form - containing up to date CLEAPPS guidance as of Oct 2023.
A fully resourced lesson for GCSE AQA chemistry on calculating percentage by mass.
Suitable and applicable for GCSE Chemistry Trilogy, and Combined Science Higher and Foundation.
Lesson Objectives
Recall how to calculate relative formula mass using a periodic table
Calculate the percentage by mass of an element in a substance using masses
Calculate the percentage by mass of an element in a substance using relative formula mass and atomic mass
Lesson includes:
Lesson powerpoint (including instructions on lesson activities, equipment to order, slide answers)
Student practical
Student worksheet (PDF and editable word versions)
Student worksheet answers (PDF and editable word versions)
A 1-2 Lesson Resources on Hydrogen fuel cells, their uses, how they work and their advantages and disadvantages compared to petrol cars and electric cars.
Lesson Objectives
Describe, in basic terms, how a hydrogen fuel works
(Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell
Describe advantages and disadvantages of hydrogen fuel cells
Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles
Lesson resources include:
Lesson powerpoint with printable diagrams for students
Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them
Relevant video links
6 marker question and mark scheme
Exam question pack on fuel cells and energy
Plenary AFL multiple choice quiz and debate activity
Preview video of resources: https://youtu.be/WWaqwYbo6IY
A pair of GCSE Chemistry Lessons for Triple Science covering electrochemical cells and associated half equations.
Lesson 1: What are Electrochemical Cells?
Lesson Objectives:
Describe what an electrochemical cell is and what we use it for
Describe how to make an electrochemical cell
Identify factors which affect the size of the voltage produced by an electrochemical cell
This lesson contains:
Lesson powerpoint
Student practical investigation
Teacher notes on how to deliver lesson slides/content and answers
Lesson 2: How do Electrochemical Cells Work?
Lesson Objectives:
Recall the definitions for oxidation and reduction
Identify which elements are oxidised and reduced in an electrochemical cell
(H) – write half equations for oxidation and reduction taking place in electrochemical cells
Explain why alkaline/non-rechargeable batteries eventually stop working
This lesson contains:
Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it
Student exam questions (23 marks worth) from AQA syllabus with mark scheme
Teacher notes on how to deliver lesson slides/content and answers
A full lesson covering how students can calculate relative formula mass.
This lesson is suitable for students studying AQA Trilogy Combined Science (higher and foundation) and AQA Triple chemistry (higher and foundation)
Lesson Objectives
Recall how to count the number of atoms in a formula
Recall what relative atomic mass is
Define what relative formula mass is
Calculate the relative formula mass of a chemical using a periodic table
Lesson includes
Lesson powerpoint - including recap of how to count atoms in a formula an how to find relative atomic mass on a periodic table, worked examples with answers, and BINGO plenary practice game
Optional worksheet with answers (PDF and editable word version)
This lesson is the fifth lesson in the “Space” topic and covers why the moon appears to change shape in our sky and the names of the phases of the moon. The lesson contains a mini-student practical, AFL mini-whiteboard tasks to assess understanding, challenge tasks for higher ability students, and a link to an online modelling software that really helps students understand the changing phases of the moon.
This lesson is designed to be easy to teach, student led and is ideal for non-specialist teachers.
This Lesson Contains:
Lesson powerpoint, including activity delivery instructions and tips for teachers, full answers, simulation link, mini-class practical (and optional alternatives), plenary task, AFL whiteboard tasks and discussion activities
Student phases of the moon worksheet (PDF) and answer sheet (PDF)
Lesson Objectives:
Name/Sketch/Describe the phases of the Moon
Explain why you see phases of the Moon
This is the 5th lesson in the “Working as a Scientist 2” Year 8 topic.
This lesson teaches students how to identify relationships in graphs using the line of best fit and how to describe trends in graphs. It also covers the ways we can improve our confidence in graphs/data, how to deal with outliers, and how to read values from a graph using the line of best fit.
It is a comprehensive lesson, with large amounts of student participation on mini-whiteboards (so loads of chances for AFL and intervention if needed). The lesson can be lenghtened or shortened with slides cut out depending on student ability and prior knowledge.
Students can then practice their skills independently by drawing and analysing their own graph on the student worksheet.
Lesson resources:
Lesson powerpoint with all answers built in automatically, various mini-whiteboard AFL tasks for students, discussion activities, scaffolding and dual coding to support lower ability/EAL/AEN students.
Student worksheet PDF
Student worksheet answers PDF
Lesson objectives:
Identify linear and directly proportional relationships
Take readings from a graph using a line of best fit
Describe how to improve confidence in conclusions made from graphs
For this lesson you will need mini-whiteboards
This bundle contains the lessons, powerpoints and all relevant resources for teaching the Separate Science GCSE Chemistry AQA content on electrochemical cells and fuel cells.
This bundle contains 3-4 lessons of content including:
Lesson 1: What are Electrochemical Cells?
Lesson Objectives:
Describe what an electrochemical cell is and what we use it for
Describe how to make an electrochemical cell
Identify factors which affect the size of the voltage produced by an electrochemical cell
This lesson contains:
Lesson powerpoint
Student practical investigation
Teacher notes on how to deliver lesson slides/content and answers
Lesson 2: How do Electrochemical Cells Work?
Lesson Objectives:
Recall the definitions for oxidation and reduction
Identify which elements are oxidised and reduced in an electrochemical cell
(H) – write half equations for oxidation and reduction taking place in electrochemical cells
Explain why alkaline/non-rechargeable batteries eventually stop working
This lesson contains:
Lesson powerpoint, containing animation about how electrochemical cells produce electrical current and the reactions that take place within it
Student exam questions (23 marks worth) from AQA syllabus with mark scheme
Teacher notes on how to deliver lesson slides/content and answers
Lesson 3/4: What are Fuel Cells?
Lesson Objectives:
Describe, in basic terms, how a hydrogen fuel works
(Higher only) write balanced half equations for the reactions taking place inside a hydrogen fuel cell
Describe advantages and disadvantages of hydrogen fuel cells
Evaluate the use of hydrogen fuel vehicles compared to electric and petrol vehicles
Lesson resources include:
Lesson powerpoint with printable diagrams for students
Explanations of half equations from fuel cell (both acid cell (not AQA) and alkaline cell (AQA) version) and balancing them
Relevant video links
6 marker question and mark scheme
Exam question pack on fuel cells and energy
Plenary AFL multiple choice quiz and debate activity
This bundle contains all the content relevant to AQA Triple Chemistry students in the new 9-1 syllabus.
Includes 4 LESSONS worth of teaching materials:
This includes the standard tests and characteristic results/colour changes for:
positive metal ion flame tests (Li, Cu, K, Na, Ca),
positive metal ion precipitate tests with NaOH (Fe(III), Fe(II), Cu(II), Mg, Ca, Al)
sulfate test with barium nitrate/chloride
halide tests (Cl, Br and I) with silver nitrate
carbonate tests with dilute acid and lime water
These lessons contain full powerpoints, student worksheets, complete answers, risk assessments/technician order forms, stretch and challenge tasks, relevant exam questions, and AfL plenary activities
Lesson 1-2: Identifying positive metal ions (flame tests and precipitate tests)
Lesson objectives:
Carry out simple flame tests to identify positive metal ions
Carry out simple precipitate tests to identify positive metal ions
Describe how to carry out a flame test and a precipitate test, including the names of any important reactants
Describe the problems and limitations of using flame tests and precipitate tests to identify positive metal ions
Lesson 3 - Identifying negative non-metal ions
Lesson objectives:
Carry out simple precipitate tests to identify halide, sulfate and carbonate ions
Describe how to carry out precipitate tests to test for halide, sulfate and carbonate ions, including the names of any important reactants
Write balanced symbol and ionic equations for the reactions taking place in precipitation reactions
Lesson 4 - Instrumental Analysis and Flame Emission Spectra
Lesson objectives:
Know what instrumental techniques are
Describe advantages and disadvantages of instrumental techniques over other analysis techniques (e.g. flame tests)
Interpret flame emission spectra to identify unknown elements in a mixture
Lesson resources include:
Complete and full powerpoints - including starter activities, challenge activities, tables of results, practical instructions, questions with complete answers
Student worksheets and practical sheets with instructions and tables for results (PDF and editable word versions)
Student worksheet answers (PDF and editable word versions)
Practical risk assessments/order forms (up to date with CLEAPPS data as of Oct 2023)
Relevant practice exam questions with mark schemes and examiners reports.
A comprehensive, complete, engaging and challenging set of lessons and activities to teach students the basics of elements, compounds, mixtures and chemical formulas. This scheme/package is designed with non-science/non-chemistry specialist teachers in mind!
Lessons included in this bundle:
Elements and Compounds
Chemical Formulas
Counting atoms in a Formula
Pure Substances
Mixtures
Included in each lesson:
Lesson powerpoint - including teacher notes and answers in “notes” section
Student-led lesson worksheet
Teacher answer sheet
Lesson resources contain:
In-built stretch and challenge tasks throughout
In-built scaffolded learning for lower abilities
Various AFL activities to assess progress and understanding that you can tailor to fit any class or available resources (these include “think, pair, share”, molymod activities, mini-whiteboard quizzes)
Relevant risk assessments for any practical work (updated as of March 2023)
By the end of the topic, students will:
Know what an “element” and a “compound” is
Describe the difference between an element and a compound
Know what an “atom” and a “molecule” are
Describe the difference between an atom and a molecule
Draw/make particle diagrams and models to represent elements, compounds, single atoms and molecules
Understand why scientists use chemical symbols to represent elements
Identify simple elements from their chemical symbols
Identify elements in a chemical formula
Classify chemical formulas as elements or compounds
Count the number of atoms in a basic formula
Identify elements in a chemical formula
Count the number of atoms in formulas containing subscripts
Count the number of atoms in formulas containing multipliers
Describe what a pure substance is
Identify examples of pure substances in everyday life
Identify pure substances from particle diagrams and examples
Carry out a practical investigation to identify pure substances
Describe what a mixture is
Give examples of mixtures in everyday life
Identify mixtures from particle diagrams and examples
Draw/make models representing mixtures
This bundle is a complete topic pack containing all powerpoints, student worksheets, risk assessments, stretch and challenge tasks, and answer sheets for the Biology topic “Cells”. It also contains many student-led activities on the powerpoints (particularly designed to make the learning of parts and functions of cells easier, more fun and student-led), plenary activities, and reading and literacy tasks (for specialised cells and unicellular organisms)
Bundle includes:
Lesson 1: Observing cells with a microscope
Lesson 2: Animal Cells
Lesson 3: Plant Cells
Lesson 4: Specialised Cells
Lesson 5: Movement of Substances (diffusion) in and out of cells
Lesson 6: Unicellular Organisms (focusing on euglena and amoeba)
Lesson Objectives:
Lesson 1: Observing Cells
Name the parts of a microscope
Describe how to use a microscope to observe very small objects
Calculate the total magnification used to observe an object
View and focus objects under a microscope
Lesson 2: Animal Cells
State what a cell is
Name the different parts of an animal cell
Describe the function of each part of an animal cell
Use a Microscope to view animal cells (cheek cells)
Lesson 3: Plant Cells
Identify parts of a plant cell from a diagram
Describe the function of each part of a plant cell
Compare the similarities and difference between an animal and plant cell
Use a microscope to view plant cells (pond weed)
Lesson 4: Specialised Cells
Know what a specialised cell and an adaptation is
Give some examples of specialised cells
Identify and describe the adaptations of some specialised cells
Explain how an adaptation makes a specialised cell good at its function
Lesson 5: Movement of Substances in and out of cells
Name some substances that move into and out of cells
Describe the process of diffusion
Describe examples of diffusion in cells
**Lesson 6: Unicellular Organisms **
Know what a unicellular organism is
Name 2 examples of unicellular organisms
Describe the features of an amoeba
Describe the features of an euglena
This bundle is a complete topic pack containing all powerpoints, student worksheets, challenge tasks, plenary activities, and answer sheets for the KS3 Physics topic “Forces”. It also contains many specially selected student-led activities on the powerpoints (particularly designed to make teaching the concepts of forces, fields, resultant forces, and weight, easier, more fun and student-led).
There are also self-completing slides where answers can be clicked and move into the correct place (great for distance learning students and cover lessons).
This bundle contains the following lessons:
Forces
Drawing Force Diagrams
Hooke’s Law
Drag and Friction
Fields
Calculating Weight
Balanced and Unbalanced Forces
Lesson objectives/outcomes:
Lesson 1 – Forces
Students should be able to:
• Explain what forces are
• Compare different types of forces
• Describe how to measure forces and give the unit of force
Lesson 2 – Drawing Force Diagrams
Students should be able to:
• Describe how forces are represented
• Identify the direction a force acts on an object
• Draw and/or label force arrows on diagrams for simple example
Lesson 3 – Hooke’s Law
Students should be able to:
• Describe how forces deform objects
• Describe how solid surfaces provide a support force
• Investigate and use Hooke’s Law
• Take accurate measurements
• Plot a graph
• Draw a line of best fit on a graph
Lesson 4 – Drag and Friction
Students should be able to:
• Describe the effect of drag forces and friction
• Explain how drag forces and friction arise
• Describe how drag forces and friction can be reduced
• Measure force using a newton meter
• Record data in an appropriate table
• use my observations to make a conclusion
Lesson 5 – Fields
Students should be able to:
• Describe what a “field” is
• Describe the effects of fields
Lesson 6 – Calculating Weight
Students should be able to:
• Describe the difference between weight and mass
• Calculate the weight of an object
• Explain why weight is different on different planets
• Convert units
• Calculate values using a calculator
Lesson 7 – Balanced and Unbalanced Forces
Students should be able to:
• Describe the difference between balanced and unbalanced forces
• Explain why objects are in equilibrium
• Explain the changing motion of objects
• Calculate resultant forces in one dimension
This bundle is a complete topic pack containing all powerpoints, student worksheets, risk assessments, stretch and challenge tasks, and answer sheets for the Biology topic “Levels of Organisation”. It also contains many student-led activities on the powerpoints (particularly designed to make the learning of parts and functions of organs/joints etc… easier, more fun and student-led), plenary activities. There are also interactive slides to demonstrate concepts (e.g. gas exchange) as well as self-completing slides where answers can be clicked and move into the correct place (great for distance learning students and cover lessons).
Bundle includes:
Lesson 1: Tissues and Organs
Lesson 2: Organ Systems
Lesson 3: Gas Exchange
Lesson 4: Breathing
Lesson 5: The Skeleton
Lesson 6: Joints
Lesson 7: Muscles
Lesson Objectives:
Lesson 1: Tissues and Organs
Define the terms “tissue” and “organ”
Identify some of the key organs in the human body
Identify some of the key organs in plants
Describe what some key organs do
Lesson 2: Organ Systems
Define the term “organ system”
Identify some of the key organ systems in the human body and what they do
Describe the hierarchy of organisation in a multicellular organism
Lesson 3: Gas Exchange
Name the key parts of the lungs
Define the process of gas exchange
Describe how parts of the gas exchange system are adapted to their function
Compare inhaled and exhaled air
WS: Read data from pie charts and draw conclusions
Lesson 4: Breathing
Describe the physical changes that occur when a person inhales and exhales
Describe a method used to estimate lung volume
WS: Measure lung volume
WS: Correlate and analyse data from a practical experiment to draw conclusions
Lesson 5: The Skeleton
Label some of the main bones in the skeleton
Describe the structure of a bone
Describe the functions of the skeletal system
Lesson 6: Joints
Name and give examples of the types of joint found in the human body
Describe the role of joints in movement
Label the structure of a joint
Carry out the dissection of a joint
Lesson 7: Muscles
Describe what a muscle is and give some examples
Describe how muscles cause movement in the body
Describe how antagonistic muscles control movement at a joint
WS: Investigate the strength of muscles
This bundle contains all the lessons you need to cover the KS3 English National Curriculum on Space.
These lessons are designed to be easy to teach (especially for non-specialists), interactive, student-led, and AfL filled/driven.
These lessons contain video links, various online simulations for students to use to aid their understanding and sense of wonder, PDF worksheets, complete PDF answer sheets, answers to all powerpoint questions (either incorperated into the powerpoint slides or in the notes sections), teacher delivery notes/tips in the “notes” sections of the powerpoints, stretch and challenge tasks for higher ability students throughout each lesson, various AfL tasks (e.g. finger voting/mini-whiteboards/true-false quizzes), and plenary tasks for each lesson.
This bundle contains the following lessons:
The Night Sky
The Solar System
Formation of the Solar System
Why we get Seasons
Phases of the Moon
Eclipses
This bundle is the complete lesson resources needed to teach core “Working Scientifically” skills to KS3 students, following the UK national curriculum.
These lessons are interactive, engaging, student-led and focused. This topic contains careers links, reading opportunities and AFL strategies throughout (including mini-whiteboards and finger voting) to help you know how your students are doing.
All questions, worksheets and tasks come with complete answers.
Lessons included:
Accuracy, Precision and Hypotheses
Writing risk assessments
Choosing graphs and Drawing Pie Charts
Calculating Means, Medians and Modes
Reading and Analysing Graphs
Communicating Scientific Information
Bias, Evidence and Peer-reviewing