Hero image

Alex Reeve and Peter Whyte

These free lessons show how the study of architecture supports the teaching of maths in junior & secondary schools. If you are attracted to the use of geometry of architecture to support your lesson plans but this is your first time, you may experience an unaccustomed enthusiasm in the classroom with a high demand for your attention. This may put you under pressure, leading you to give up. Be patient. Keep going. Have an assistant. Students will soon grasp the concepts.

These free lessons show how the study of architecture supports the teaching of maths in junior & secondary schools. If you are attracted to the use of geometry of architecture to support your lesson plans but this is your first time, you may experience an unaccustomed enthusiasm in the classroom with a high demand for your attention. This may put you under pressure, leading you to give up. Be patient. Keep going. Have an assistant. Students will soon grasp the concepts.
Construction design mathematics: Pythagoras and a Classical temple stylobate
sonneteersonneteer

Construction design mathematics: Pythagoras and a Classical temple stylobate

(0)
This lesson is designed for mathematics students at Key Stage 3. It fuses the study of Pythagoras’ Theorem with the study and design of the stylobates - or floor plans - of several Classical temples. The Theorem is approached in an easy to understand step-by-step way . Pythagorean triples are introduced through the medium of a plan of the Classical temple stylobate. The teacher and student are then guided through the process of drawing a floor plan using Ancient Greek units using a pair of compasses, pencil and ruler. The lesson also includes information on the siting and development of the Classical temple.
Construction Design Mathematics: a Gothic vesica & a triquetra
sonneteersonneteer

Construction Design Mathematics: a Gothic vesica & a triquetra

(0)
How to draw a vesica piscis School curriculum: Key stage 3 mathematics Mathematically this shape is termed an ellipse and is produced when two circles of the same radius intersect such that the centre point of each circle lies on the circumference of the other, with both circular elements being smaller than a semicircle. The two circular elements would also join along their chords. It extends the introductory exercise constructing a perpendicular bisector. The shape should recall the first steps in the construction of an isosceles or equilateral triangle (see separate lesson on drawing a lancet arch). The equilateral triangle has as its verteces the centre points of the two circles and one of the two sharp corners of the vesica piscis The area of an ellipse is also twice that of a the pointed arch section of a lancet window. Drawing a triquetra (a pointed trefoil) extends the subject. School Curriculum: Key Stage 2 & 3 mathematics: A pointed trefoil may be turned about its centre point into three identical positions, i.e. it has rotational symmetry of order three. A triquetra, from the Latin for three corners. comprises three circular arcs of equal radius. The exercise extends the work on a purpendicular bisector and a vesica piscis.
The emergence of the ogee or S-shaped arch
sonneteersonneteer

The emergence of the ogee or S-shaped arch

(0)
How to draw an ogee arch Illustrated and easy-to-follow instructions on how to draw an ogee arch. The ogee or S-shaped arch is the principal architectural feature of the Decorated period church window. The ogee as an architectural motif has a long history: it had been used in India in antiquity; it arrived in Egypt in the ninth century, then in Venice in the thirteenth. Soon after it appearance in Venice, it turned up in England. Theories explaining the ogee’s appearance in England are explored. School Curriculum: Key Stage 3 Mathematics: Draw and manipulate triangles, arcs and semicircles with increasing accuracy; identify their properties, including line symmetry.
The geometry of the volute of an Ionic column
sonneteersonneteer

The geometry of the volute of an Ionic column

(0)
Studying the geometry of a Classical Ionic column can be undertaken with satisfying results at Key Stage, 2, 3 & 4. At Key Stage 2 & Drawing a volute with semicircles enables students to create a pattern with repeating shapes in different sizes and orientations. Students will thereby become familiar with the properties of a circle (circumference, radius & diameter). At Key Stage 4 drawing a volute with quadrants will facilitate the calculation of arc length subtended by those quadrants.
History, maths & geometry of a Roman arch
sonneteersonneteer

History, maths & geometry of a Roman arch

(0)
The lesson examines the history, purpose and construction of the Roman arch, and how it was developed through mathematics developed by Archimedes in his experiments to measure pi (π). Students will conduct experiments to ascertain a measurement of π, and are provided with illustrated instruction in the drawing of a `Roman arch and brace.
Draw a front elevation of a Classical temple
sonneteersonneteer

Draw a front elevation of a Classical temple

(0)
This lesson is suitable for more able pupils at Key Stage 2 and most pupils at Key Stage 3. It is an exercise in drawing the frontal elevation of a Classical Doric temple. It reinforces skills in measuring, the accurate drawing of straight lines, and using a protractor. Drawing a Doric temple supports the teaching of 2-D shapes in a novel and imaginative way, and covers the definitions and properties of rectangles and isosceles triangles.
Pythagoras Theorem and Classical Greek Temple
sonneteersonneteer

Pythagoras Theorem and Classical Greek Temple

(0)
The lesson introduces the study of Pythagoras through the medium of the Classical Temple. At Key Stage 3 & 4 drawing the stylobate - or floor plan - of a Classical temple is an appropriate way to introduce Pythagoras’ Theorem, which provides an insight into the importance of number theory and geometry to architects in antiquity. The lesson defines Pythorean triples with several examples taken from measurements of ruined stylobates of Classical temples. The lesson provides instruction to teacher and student through geometric drawings to enable each to produce a stylobate of satisfying quality.
Pythagoras, rectangles & Greek temples
sonneteersonneteer

Pythagoras, rectangles & Greek temples

(0)
Greek Temples A Greek temple may align along its diagonal to the East. A rectangular temple often comprises two adjacent squares and measures in Pythagorean triplets. At Key Stage 2, drawing a Greek temple supports the teaching of 2-D shapes in mathematics. It provides an opportunity to practise measuring, and covers the definitions and properties of rectangles and isosceles triangles. At Key Stage 3, drawing the plan of a stylobate of a Greek temple is an appropriate way to introduce Pythagoras Theorem while drawing a Doric temple enables the understanding of the importance of geometry and number theory to Greek architects. A Pythagorean triple is a right angled triangle with sides of three positive integers: a, b, and c usually written (a, b, c). The smallest triple numerically is (3, 4, 5). Other combinations of positive integers produce Pythagorean triples. Multiples of these integers - producing a scaled up right angled triangle - are also Pythagorean triples.