Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Homeostasis & exercise (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Homeostasis & exercise (Edexcel Int. A-level Biology)

(0)
This lesson reminds students of the meaning of homeostasis and describes the how thermoregulation maintains the body in dynamic equilibrium during exercise. The PowerPoint has been designed to cover point 7.17 of the Edexcel International A-level Biology specification. Students were introduced to homeostasis at GCSE and this lesson has been written to build on that knowledge and to add the key detail needed at this level. Focusing on the three main parts of a homeostatic control system, the students will learn about the role of the internal and peripheral thermoreceptors, the thermoregulatory centre in the hypothalamus and the range of effectors which bring about the responses to restore optimum levels. The following responses are covered in this lesson: Vasodilation Increased sweating Body hairs In each case, time is taken to challenge students on their ability to make links to related topics such as the arterioles involved in the redistribution of blood and the high specific latent heat of vaporisation of water.
Proteins (OCR A-level Biology)
GJHeducationGJHeducation

Proteins (OCR A-level Biology)

5 Resources
According to Bill Bryson’s book, “THE BODY”, estimates of the number of proteins in the human body range from a few hundred thousand to a million or more. Regardless of whether the actual number is closer to the bottom or the top estimate, as most of the useful things in the body are proteins, it is clear that a deep understanding of the structure and function of this biological molecule is critical for the success of any student on the OCR A-level Biology A course. All 5 of the lessons included in this bundle are highly detailed and contain a wide range of tasks that will engage and motivate the students whilst ensuring that the specification points in module 2.1.2 regarding proteins are covered. The following content is covered by the lessons in this bundle: The general structure of an amino acid The synthesis and breakdown of dipeptides and polypeptides, by the formation and breakage of peptide bonds The levels of proteins structure The structure and function of globular proteins The properties and functions of fibrous proteins The biuret test for proteins The 5th lesson is a revision lesson which uses a range of exam-style questions, understanding checks and quiz competitions to check on the students knowledge of the specification details listed above
Types of selection (Edexcel A-level Biology B)
GJHeducationGJHeducation

Types of selection (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how selection pressures act on a gene pool and cause stabilising, directional and disruptive selection. The PowerPoint and accompanying resources have been designed to cover point 8.3 (i) of the Edexcel A-level Biology B specification which states that students should be able to identify each type of selection by its effect on different phenotypes. The lesson begins with an introduction to the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. This shows changes in numbers of the organisms and sketch graphs are then constructed to show these changes in the population size. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions.
Phagocytosis (AQA A-level Biology)
GJHeducationGJHeducation

Phagocytosis (AQA A-level Biology)

(0)
This lesson describes the sequence of events that occur during the phagocytosis of pathogens and the subsequent destruction by lysozymes. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover the second part of point 2.4 of the AQA A-level Biology specification but includes an introduction to antigen-presentation so that the students are prepared for upcoming lessons on the cellular and humoral responses. At the start of the lesson, the students are challenged to recall that cytosis is a suffix associated with transport mechanisms and this introduces phagocytosis as a form of endocytosis which takes in pathogens and foreign particles. This emphasis on key terminology runs throughout the course of the lesson and students are encouraged to consider how the start or end of a word can be used to determine meaning. The process of phagocytosis is then split into 5 key steps and time is taken to discuss the role of opsonins as well as the fusion of lysosomes and the release of lysozymes. A series of application questions are used to challenge the students on their ability to make links to related topics including an understanding of how the hydrolysis of the peptidoglycan wall of a bacteria results in lysis. Students will be able to distinguish between neutrophils and monocytes from a diagram and at this point, the role of macrophages and dendritic cells as antigen-presenting cells is described so that it can be used in the next lesson. The lesson concludes with a brief introduction to lymphocytes so that initial links between phagocytosis and the specific immune responses are made.
Topic 8: Origins of genetic variation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 8: Origins of genetic variation (Edexcel A-level Biology B)

10 Resources
This lesson bundle contains 10 lessons which are fully-resourced and have been designed to cover the content as detailed in topic 8 of the Edexcel A-level Biology B specification (Origins of genetic variation). Each lesson includes a wide range of activities that will engage and motivate the students whilst covering the following topic 8 specification points: Mutations are the source of new variations Random assortment and crossing over in meiosis give rise to new combinations of alleles in gametes Random fertilisation brings about genetic variation The meaning of genetic terms Be able to construct genetic crosses and pedigree diagrams The inheritance of two non-interacting unlinked genes Autosomal linkage as the presence of alleles on the same chromosome Sex linkage on the X chromosome Use the chi squared test to determine the significance of the difference between observed and expected results Stabilising and disruptive selection Genetic drift Population bottlenecks and the founder effect Monitoring changes in allele frequencies using the Hardy Weinberg equation If you would like to sample the quality of the lessons in this bundle then download the sex linkage and genetic drift lessons as these have been uploaded for free
Natural selection (CIE A-level Biology)
GJHeducationGJHeducation

Natural selection (CIE A-level Biology)

(0)
This engaging lesson uses the example of resistant bacteria and the modern-day giraffe to describe how natural selection occurs. The PowerPoint and accompanying resources have been designed to cover point 17.2 (a) of the CIE A-level Biology specification but also explains that genetic diversity is important for selection and therefore covers 17.1 (d) at the same time. President Trump’s error ridden speech about viruses antibiotics is used at the beginning of the lesson to remind students antibiotics are actually a treatment for bacterial infections. Moving forwards, 2 quick quiz competitions will initially introduce MRSA and then will show the students that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin. In doing so, they will see the principles of natural selection so they can be applied to different situations such as describing how the anatomy of the modern-day giraffe has evolved over time. The final part of the lesson introduces adaptations and convergent evolution and also links to the need for modern classification techniques which is covered later in topic 17.
Properties and roles of water (OCR A-level Biology)
GJHeducationGJHeducation

Properties and roles of water (OCR A-level Biology)

(1)
This detailed lesson describes the relationship between the structure, properties and roles of water for living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point 2.1.2 (a) of the OCR A-level Biology A course and has been specifically designed to ensure that each role is illustrated using an example in prokaryotes or eukaryotes. As this is the first lesson in the biological molecules sub-module (2.1.2), which is a topic that students tend to find difficult or potentially less engaging, the planning has centred around the inclusion of a wide variety of tasks to cover the content whilst maintaining motivation and engagement. These tasks include current understanding and prior knowledge checks, discussion points and quick quiz competitions to introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: As a solvent to act as a transport medium in blood plasma Molecules are attracted by cohesive forces to enable transport in the xylem High latent heat of vaporisation for thermoregulation High specific heat capacity for the maintenance of a stable environment Peak density in the liquid form allowing ice to float The final part of the lesson introduces condensation and hydrolysis reactions and students will learn that a clear understanding of these reactions is fundamental as they will reappear throughout the module in the synthesis and breakdown of biological molecules.
Ventilation and gas exchange in insects (OCR A-level Biology)
GJHeducationGJHeducation

Ventilation and gas exchange in insects (OCR A-level Biology)

(1)
This lesson describes the mechanisms of ventilation and gas exchange in insects. The PowerPoint and accompanying worksheets are the part of the second lesson in a series of 2 lessons which have been designed to cover the details that are set out in point 3.1.1 (f) of the OCR A-level Biology A specification. The first lesson in this series describes ventilation and gas exchange in bony fish In the previous lesson, the students were introduced to the different circulatory systems of mammals and bony fish and this knowledge is checked upon at the start of this lesson. This is relevant because the open circulatory system of an insect explains how oxygen is not transported in the blood but instead is absorbed from the body fluid that bathes the tissues. The next part of the lesson describes the structure of the spiracles, tracheae and tracheoles in the tracheal system and explains how this system is responsible for the delivery of oxygen to the open end of the tracheole for gas exchange with this fluid. As the tracheae are supported by chitin, which is similar in structure and function to cellulose and keratin respectively, a series of exam-style questions are used to challenge the students on their knowledge of those polymers from module 2.1.2 (biological molecules). As always, the mark scheme is embedded in the powerpoint so students can assess their understanding and progress. The final part of the lesson describes how squeezing of the tracheoles by the flight muscles and the changes in the volume of the thorax as a result of the movement of the wings are similar to mechanisms observed in mammals.
The roles of enzymes & mechanism of action (OCR A-level Biology)
GJHeducationGJHeducation

The roles of enzymes & mechanism of action (OCR A-level Biology)

(1)
This fully-resourced lesson describes the roles of enzymes in catalysing both intracellular and extracellular reactions and the mechanism of enzyme action. The engaging PowerPoint and accompanying resources have been designed to cover points 2.1.4 (a, b & c) of the OCR A-level Biology A specification and includes descriptions of Fischer’s lock and key hypothesis and Koshland’s induced-fit model as well as a focus on catalase and the digestive enzymes as intracellular and extracellular enzymes respectively. The lesson has been specifically planned to tie in with module 2.1.2 where protein structure and globular proteins were covered. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The final part of the lesson focuses on intracellular and extracellular enzymes. The students are challenged on their recall of the roles of DNA helicase and polymerase in DNA replication before they are challenged on their ability to apply their knowledge and understanding to an unfamiliar situation with questions about catalase and its role in the decomposition of hydrogen peroxide. The lesson concludes with one further set of exam-style questions that challenge their knowledge of carbohydrates, lipids and proteins from module 2.1.3 as they have to recognise some extracellular digestive enzymes from descriptions of their substrates.
The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)
GJHeducationGJHeducation

The sliding filament model of MUSCULAR CONTRACTION (OCR A-level Biology A)

(1)
This is a fully-resourced lesson that covers the content of specification point 5.1.5 (l) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply their knowledge and understanding of the sliding filament model of muscular contraction. The wide range of activities included in the lesson will engage and motivate the students whilst the understanding and previous knowledge checks will not only allow them to assess their progress but also challenge them to make links to other Biology topics. The lesson begins by using an idea from the quiz show POINTLESS to get them to recognise that myology is the study of muscles. This leads nicely into the next task, where they have to identify three further terms (from 12) which will also begin with myo and are the names of structures involved in the arrangement of skeletal muscle. Key terminology is used throughout the lesson so that students feel comfortable when they encounter this in questions. Students are introduced to the sarcomere and the bands and zones that are found within a myofibril so they can discover how most of these structures narrow but the A band, which is the length of the myosin filament, stays the same length between resting and contracted muscle. This has been designed to lead into a discussion point where they are encouraged to consider how the sarcomere can narrow but the lengths of the myofilaments can remain the same. The main task of the lesson involves the formation of a bullet point description of the sliding filament model where one event is the trigger for the next. Time is taken during this section to focus on the involvement of the calcium ions but also ATP and the idea of the sources of this molecule, including creatine phosphate, are discussed in more detail later in the lesson. The final part of the lesson involves students having to apply their knowledge by describing the effect on muscle contraction when a part of a structure is unable to function correctly. This lesson has been designed for students studying the OCR A-level Biology course and ties in nicely with the other lessons on this particular topic such as neuromuscular junctions as well as the other uploaded lessons from module 5
Mitosis and Meiosis REVISION (AQA GCSE)
GJHeducationGJHeducation

Mitosis and Meiosis REVISION (AQA GCSE)

(0)
Students commonly confuse the two forms of cell division, so this revision lesson has been designed to address those mistakes and misconceptions. The PowerPoint and accompanying resources have been planned to challenge the students on their understanding of the details of points 1.2.1, 1.2.2 and 6.1.2 of the AQA GCSE biology and combined science specifications. The lesson goes through each of the three stages of the cell cycle including mitosis, to ensure that students can describe the key events and state the outcome in terms of the daughter cells. The lesson contains a series of tasks which include exam questions, discussions and a quiz which allow the students to assess their understanding. The final part of the lesson focuses on meiosis and specifically the differences to mitosis in terms of the number of cell divisions, the gametes formed, and their genetic make up. This lesson has been designed to be used for revision purposes in the lead up to the GCSE exams or in preparation for an end of topic test or mocks.
Classification REVISION (AQA GCSE)
GJHeducationGJHeducation

Classification REVISION (AQA GCSE)

(0)
This fully-resourced revision lesson allows students to check on their understanding of Linnaeus’s and Woese’s classification systems. The engaging PowerPoint and accompanying resources have been designed to challenge the details of point B6.4 of the AQA GCSE biology and combined science specifications. The lesson contains a range of tasks including exam-questions and quizzes which provide opportunities for the students to assess their knowledge of kingdom, phylum, class, order, family, genus and species as the classification taxa and to recognise the binomial naming system. The lesson also reminds students that the three domain-system divides the Prokaryote kingdom into Archaea and Bacteria and describes how this system was developed once new evidence was discovered. As well as testing the content of B6.4, this lesson uses a series of questions to challenge understanding of linked topics which include eukaryotic and prokaryotic cell structures, microscopes, communicable diseases and ecological terms. This lesson has been planned for revision purposes in the lead up to the GCSE exams or before end of topic tests or mocks.
Control of blood glucose REVISION (GCSE)
GJHeducationGJHeducation

Control of blood glucose REVISION (GCSE)

(0)
This engaging revision lesson challenges students on their understanding of the homeostatic control system that regulates blood glucose concentration. The PowerPoint and accompanying resources have been designed to check on the understanding of the details in specification point 5.3.2 of the AQA biology and combined science specifications. A common mistake in this topic is that students confuse glycogen with glucagon and use them incorrectly so time is spent to ensure that students recognise the difference between the complex carbohydrate and the hormone. In addition to challenging the students on their knowledge of this control system, the following linked topics are also challenged: key biological terms (beginning with G) the digestive system structures in a control system
Osmosis and Acceleration REVISION (AQA GCSE)
GJHeducationGJHeducation

Osmosis and Acceleration REVISION (AQA GCSE)

(0)
This revision lesson challenges students to explain the results of an osmosis investigation and to calculate accelerations using 2 equations. The PowerPoint and accompanying resources have been designed to check on the understanding of these two topics as detailed in the AQA GCSE biology, physics and combined specifications. The lesson contains a range of tasks including worked examples, exam questions and quizzes which will remind students that water molecules move across partially permeable membranes by osmosis and how changes in the mass of a potato can be used to compare water concentrations in the potato and solution. Students will also recall that acceleration can be calculated from velocity-time graphs using change in velocity/time as well as through the use of F=ma.
OCR A-level Biology A PAPER 2 REVISION (Biological diversity)
GJHeducationGJHeducation

OCR A-level Biology A PAPER 2 REVISION (Biological diversity)

(8)
A considerable amount of time and thought has been put into the design of this extensive resource with the aim of motivating students to evaluate their understanding of the content in modules 1, 2, 4 and 6 of the OCR A-level Biology A specification which can be assessed in PAPER 2 (Biological diversity). The resource includes a detailed and engaging Powerpoint (226 slides) and is fully-resourced with differentiated worksheets that challenge the students on a wide range of topics. The resource has been written to include different types of activities such as exam questions with explained answers, understanding checks and quiz competitions. The aim was to cover as much of the specification content as possible but the following topics have been given particular attention: Genetic terminology Monogenic and dihybrid inheritance Hardy-Weinberg principle Sex-linked diseases Blood clotting The properties of water Codominance and multiple alleles Types of variation Communicable diseases Genetically engineering bacteria to produce insulin Antibiotics and antibiotic resistance Vaccinations Ecological terminology Classification hierachy The genetic code and gene mutations Chi-squared test Epistasis Sampling Selection pressures and types of selection The Carbon cycle Due to the size of the resource and the range of topics that are covered, this is likely to be used over the course of a number of lessons and will enable teachers to pinpoint specific areas to spend more time on. The mathematical element of the course is challenged throughout the lesson and helpful hints are provided to support students in structuring their answers. This resource can be used in the lead up to the actual Paper 2 exam or earlier in the course when a particular area of modules 1, 2, 4 or 6 is being studied. I truly hope that this resource helps your students in their aims to achieve their potential grades.
AQA GCSE Combined Science Paper 2 REVISION (Biology topics B5 - B7)
GJHeducationGJHeducation

AQA GCSE Combined Science Paper 2 REVISION (Biology topics B5 - B7)

(8)
This is a fully-resourced REVISION lesson that consists of an engaging PowerPoint (121 slides) and associated worksheets that challenge the students on their knowledge of topics B5 - B7 (Homeostasis and response, Inheritance, variation and evolution and Ecology) of the AQA GCSE Combined Science Trilogy specification and can be assessed on PAPER 2. A wide range of activities have been written into the lesson to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to include as much which of the content that can be assessed in paper, but the following sub-topics have been given particular attention: The structure of DNA Genetic terminology Inheritance crosses Sex determination IVF The structure of the nervous system Reflexes Type I and II Diabetes The main steps in the process of genetic engineering Antibiotic resistance Evolution by natural selection Ecological terms The carbon cycle The mathematic elements of the Combined Science specification are challenged throughout the resource. Due to the size of this resource, it is likely that teachers will choose to use it over the course of a number of lessons and it is suitable for use in the lead up to the mocks or in the lead up to the actual GCSE exams.
Directional and Stabilising SELECTION (AQA A-level Biology)
GJHeducationGJHeducation

Directional and Stabilising SELECTION (AQA A-level Biology)

(0)
This fully-resourced lesson describes the meaning of directional and stabilising selection and uses real-life examples to develop student understanding. The PowerPoint and accompanying resources are part of the 3rd lesson in a series of 4 that have been designed to cover the details of topic 4.4 (genetic diversity and adaptation) of the AQA A-level biology specification. As stated in the specification, antibiotic resistance is used as the key example to explain directional selection whereas human baby birth weight explains stabilising selection. The lesson is filled with current understanding checks so any misunderstandings can be immediately addressed, and also prior knowledge checks, where students are expected to recall key details from lessons in this topic so they can make important links. The lesson concludes with a short quiz called “SELECT that word” (shown on the cover image) where students have to identify the types of selection from clues to reveal a key biological word.
Succession (Edexcel SNAB)
GJHeducationGJHeducation

Succession (Edexcel SNAB)

(0)
This fully-resourced lesson describes the stages of succession from colonisation to climax community. The PowerPoint and accompanying worksheets have been designed to cover the content of point 5.4 of the Edexcel A-level Biology A specification. As you can see from the cover image, this lesson uses a step-by-step method to guide the students through each stage of the process of succession, explaining each of the gradual, progressive changes that occur in a community over time. At each stage, time is taken to consider the organisms involved. There is a focus on lichens as examples of pioneer species and students will understand how colonisation by these organisms is critical to provide organic matter and to turn the bare ground into soil so it is habitable by other species. The island of Surtsey in Iceland is used as real-world example and shows how different parts of an area can be at different stages of succession. Understanding and prior knowledge checks are embedded into the PowerPoint (along with the answers) to allow students to assess their progress against the current topic and to encourage them to make links to previously-covered work.
Species, populations, gene pool & allele frequency (AQA A-level biology)
GJHeducationGJHeducation

Species, populations, gene pool & allele frequency (AQA A-level biology)

(0)
This lesson describes the biological meaning of species, populations, gene pool and allele frequency and explains how these terms are linked. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 2 lessons that cover the detail of specification point 7.2 (Populations) of the AQA A-level biology. The two living species of the African elephant, the forest and bush elephant, are used as examples to demonstrate the meaning of species and to show how they exist as one or more populations. A quick quiz introduces the term gene pool in an engaging way and then the allele frequency of three versions of the GBA gene demonstrates how these frequencies can change in small populations. In doing so, students are briefly introduced to genetic drift which they will encounter in an upcoming topic. The students are challenged throughout the lesson with understanding checks and prior knowledge checks as well as exam-based questions where they have to comment on the validity of a scientist’s conclusion. The other lesson in topic 7.2 is the Hardy-Weinberg principle.
Succession (AQA A-level biology)
GJHeducationGJHeducation

Succession (AQA A-level biology)

(0)
This lesson describes succession as the gradual, progressive changes that occur in a community over time. The PowerPoint and accompanying resources are part of lesson 3 in a series of 4 lessons which have been planned to cover the content included in topic 7.4 of the AQA A-level biology specification. In line with the specification, the lesson describes primary succession and explains how the community changes from the initial colonisation by the pioneer species to the establishment of a climax community. Time is taken to focus on the lichen as a pioneer species and to explain how their actions lead to the production of soil and the subsequent colonisation by more hardy species. The island of Surtsey is used as a real-world example to deepen student understanding. Understanding checks and prior knowledge checks are embedded throughout the lesson (along with the answers) so students can assess their progress on the current topic and also test their ability to link to previously covered topics. Due to the high mathematical content of the AQA assessments, a maths in a biology context question has also been included.