Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Edexcel GCSE Combined Science Bio Topic 7 REVISION (Animal coordination, control and homeostasis)
GJHeducationGJHeducation

Edexcel GCSE Combined Science Bio Topic 7 REVISION (Animal coordination, control and homeostasis)

(1)
This REVISION resource has been written with the aim of motivating the students whilst they are challenged on their knowledge of the content in Biology TOPIC 7 (Animal coordination, control and homeostasis) of the Edexcel GCSE Combined Science specification. The resource contains an engaging and detailed PowerPoint (73 slides) and accompanying worksheets, some of which are differentiated to provide extra scaffolding to students when it is required. The wide range of activities have been designed to cover as much of topic 7 as possible but the following sub-topics have been given a particular focus: The causes and treatments of diabetes type I and II The control of blood glucose concentration through the release of insulin and glucagon The importance of homeostasis Calculating BMI The hormones involved in the female menstrual cycle The use of clomifene therapy and IVF in assisted reproductive therapy Hormonal and barrier methods of contraception The actions of adrenaline There is a large emphasis on mathematical skills in the new specification and these are tested throughout the lesson. This resource is suitable for use at the end of topic 7, in the lead up to mocks or in the preparation for the final GCSE exams.
Link reaction & Krebs cycle (Edexcel A-level Biology B)
GJHeducationGJHeducation

Link reaction & Krebs cycle (Edexcel A-level Biology B)

(1)
This detailed lesson describes how the Link reaction and the Krebs cycle, that take place in the matrix, result in the complete oxidation of pyruvate. The PowerPoint and the accompanying resource have been designed to cover points 5.3 (i) & (ii) of the Edexcel A-level Biology B specification and describes how these reactions result in carbon dioxide, reduced NAD (and FAD) and ATP The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that these two stages occur in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. The rest of the lesson focuses on the Krebs cycle. In line with the detail of the specification, students will understand how decarboxylation and dehydrogenation reactions result in the regeneration of the oxaloacetate It is estimated that it will take about 2 hours of A-level teaching time to cover the detail of the lesson and therefore the detail of the specification point 5.3
Thermoregulation (Edexcel GCSE Biology)
GJHeducationGJHeducation

Thermoregulation (Edexcel GCSE Biology)

(1)
This lesson has been designed to cover the content in points 7.11 and 7.12 of the Edexcel GCSE Biology specification which states that students should be able to explain how thermoregulation takes place, with particular reference to the role of the skin. This resource contains an engaging PowerPoint and a differentiated worksheet, which together use a wide range of activities to motivate the students and to engage them in the content matter. The lesson begins by challenging the students to calculate a number from a series of biological based statements. This number is 37 which introduces the students to this temperature as the set-point at which homeostasis acts to maintain the body temperature. At this point of the lesson, a number of prior knowledge checks are used to challenge the students on their recall of the parts of a control system as well as challenging them to explain why temperatures above or below this set point can be problematic for body reactions. The main part of the lesson goes through the steps in the body’s detection and response to an increase in temperature and students will be introduced to the range of structures involved. Time is taken to focus on the role of the skin as an effector and key details about vasodilation and the production of sweat are discussed at length. The final task challenges the students to use all of the information from earlier in the lesson to write a detailed description of how the body detects and responds to a decrease in temperature. This lesson has been written for students studying on the Edexcel GCSE Biology course but is also suitable for older students who are studying thermoregulation and need to recall the key details.
Coordination of the heartbeat (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Coordination of the heartbeat (Edexcel Int. A-level Biology)

(1)
This fully-resourced lesson describes the roles of the SAN, AVN, the bundle of His and Purkyne tissue in the coordination of the heartbeat. The PowerPoint and accompanying resources have been designed to cover points 7.12 (i) & (ii) of the Edexcel International A-level Biology specification and also describes the myogenic nature of cardiac muscle. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 1. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
Primary, secondary, tertiary & quaternary structure of proteins (WJEC)
GJHeducationGJHeducation

Primary, secondary, tertiary & quaternary structure of proteins (WJEC)

(1)
This detailed lesson describes the different levels of protein structure and focuses on the bonds that hold these molecules in shape. Both the engaging PowerPoint and accompanying resources have been designed to cover point (i) as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and makes continual links to previous lessons such as amino acids & peptide bonds as well as to upcoming lessons like enzymes and antibodies. The start of the lesson focuses on a gene as a sequence of bases that code for the amino acid sequence in a polypeptide and a step by step guide is used to demonstrate how the sequences of bases in a gene acts as a template to form a sequence of codons on a mRNA strand and how this is translated into a particular sequence of amino acids known as the primary structure. The students are then challenged to apply their understanding of this process by using three more gene sequences to work out three primary structures and recognise how different genes lead to different sequences. Moving forwards, students will learn how the order of amino acids in the primary structure determines the shape of the protein molecule, through its secondary, tertiary and quaternary structure and time is taken to consider the details of each of these. There is a particular focus on the different bonds that hold the 3D shape firmly in place and a quick quiz round then introduces the importance of this shape as exemplified by enzymes, antibodies and hormones. Students will see the differences between globular and fibrous protein and again biological examples are used to increase relevance. The lesson concludes with one final quiz round called STRUC by NUMBERS where the students have to use their understanding of the protein structures to calculate a numerical answer.
Sensory, relay and motor neurones (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Sensory, relay and motor neurones (Pearson Edexcel A-level Biology)

(1)
This fully-resourced lesson looks at the structures of the sensory, relay and motor neurones and explains how the presence of a myelin sheath increases the speed of conduction of an impulse. The engaging PowerPoint and accompanying resources have been designed to cover point 8.1 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to apply their understanding of the structures and functions of sensory, relay and motor neurones as well as the differences between myelinated and unmyelinated neurones. This lesson also covers 8.2 (i) as the students will be able to see how conduction along a motor neurone stimulates effectors to respond to a stimulus. The PowerPoint has been designed to contain a wide range of activities that are interspersed between understanding and prior knowledge checks that allow the students to assess their progress on the current topics as well as challenge their ability to make links to topics from earlier in the modules. Quiz competitions like SAY WHAT YOU SEE are used to introduce key terms in a fun and memorable way. The students will be able to compare these neurones based on their function but also distinguish between them based on their structural features. Time is taken to look at the importance of the myelin sheath for the sensory and motor neurones. Students will be introduced to the need for the entry of ions to cause depolarisation and will learn that this is only possible at the nodes of Ranvier when there is a myelin sheath. Key terminology such as saltatory conduction is introduced and explained. The final task involves a comparison between the three neurones to check that the students have understood the structures and functions of the neurones. Throughout the lesson, links are made to related topics such the organisation of the nervous system and students will be given additional knowledge such as the differences between somatic and autonomic motor neurones.
Light-independent reactions (Edexcel A-level Biology A)
GJHeducationGJHeducation

Light-independent reactions (Edexcel A-level Biology A)

(1)
This lesson describes the light-independent reactions of photosynthesis as reduction of carbon dioxide using the products of the light-dependent reactions. The detailed PowerPoint and accompanying resources have been designed to cover point 5.8 (i) of the Pearson Edexcel A-level Biology A (Salters-Nuffield) specification and therefore describes carbon fixation in the Calvin cycle and the roles of GP, GALP, RuBP and RUBISCO). The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and GALP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RUBISCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to GALP The use of the majority of the GALP in the regeneration of RuBP A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the GALP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent reactions as well as the upcoming lesson on the products of the light-independent reactions.
The immune response (Edexcel A-level Biology A)
GJHeducationGJHeducation

The immune response (Edexcel A-level Biology A)

(1)
This fully-resourced lesson describes the roles of antigens, antibodies, B cells and T cells in the body’s immune response. The PowerPoint and accompanying worksheets have been designed to cover specification points 6.8 & 6.9 as detailed in the Pearson Edexcel A-level Biology A specification and includes descriptions of the involvement of plasma (effector) cells and macrophages as antigen-presenting cells. In the previous lesson on the non-specific responses, the students were introduced to macrophages and dendritic cells as antigen-presenting cells and the start of this lesson challenges their recall and understanding of this process. Time is taken to discuss how the contact between these cells and lymphocytes is critical for the initiation of the body’s (specific) immune response. Moving forwards, a quick quiz competition is used to introduce the names of the different T cells that result from differentiation. Their specific roles are described including an emphasis on the importance of the release of cytokines in cell signalling to activate other immune system cells. T memory cells are also introduced so that students can understand their role in immunological memory and active immunity as described in an upcoming lesson covering point 6.12. The next part of the lesson focuses on the B cells and describes how clonal selection and clonal expansion results in the formation of memory B cells and effector cells. A series of understanding and application questions are then used to introduce the structure of antibodies and to explain how the complementary shape of the variable region allows the antigen-antibody complex to be formed. The lesson concludes by emphasising that the pathogen will be overcome as a result of the combination of the actions of phagocytes, T killer cells and the antibodies released by the effector cells.
Transcription factors (Edexcel A-level Biology A)
GJHeducationGJHeducation

Transcription factors (Edexcel A-level Biology A)

(1)
This fully-resourced lesson describes how genes can be switched on and off by DNA transcription factors, including hormones. The PowerPoint and accompanying resources have been designed to cover point 7.16 as detailed in the Pearson Edexcel A-level Biology A specification but also links to topic 3 when the lac operon was described in relation to differential gene expression. This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in topic 2, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promotor region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their remainder of the lesson looks at the ER receptor and students will learn that this factor is normally inactive due to an inhibitor being attached. This will then introduce oestrogen as the hormone which binds to the receptor, causing the inhibitor to be released and activating the factor. The main task then challenges them to order statements containing the detailed events that follow the binding of oestrogen. The lesson in topic 3 on gene expression which describes the lac operon has also been uploaded for free.
The non-specific responses (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The non-specific responses (Edexcel Int. A-level Biology)

(1)
This lesson describes the non-specific responses of the body to infection which include inflammation, lysozyme action, interferon and phagocytosis. The detailed PowerPoint and accompanying resources have been primarily designed to cover the content of point 6.8 of the Edexcel International A-level Biology specification but key details such as antigen-presentation are also introduced to prepare students for upcoming lessons on the immune response (6.9 & 6.10). At the start of the lesson, the students are challenged to recall that cytosis is a suffix associated with transport mechanisms and this introduces phagocytosis as a form of endocytosis which takes in pathogens and foreign particles. This emphasis on key terminology runs throughout the course of the lesson and students are encouraged to consider how the start or end of a word can be used to determine meaning. The process of phagocytosis is then split into 5 key steps and time is taken to discuss the role of opsonins as well as the fusion of lysosomes and the release of lysozymes. A series of application questions are used to challenge the students on their ability to make links to related topics including an understanding of how the hydrolysis of the peptidoglycan wall of a bacteria results in lysis. Students will be able to distinguish between neutrophils and monocytes from a diagram and at this point, the role of macrophages and dendritic cells as antigen-presenting cells is described so that it can be used in the next lesson. The importance of cell signalling for an effective immune response is discussed and the rest of the lesson focuses on the release of two chemicals - interferons and histamine. During the interferon section, references are made to a previous lesson on HIV structure and action so students can understand how the release of these signalling proteins helps neighbouring cells to heighten their anti-viral defences. A step by step guide is used to describe the release of histamine in the inflammatory response and the final task challenges students to use this support to form a detailed answer regarding the steps in inflammation.
Skeletal muscle (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Skeletal muscle (Edexcel Int. A-level Biology)

(1)
This lesson describes the detailed structure of a skeletal muscle fibre and the structural and physiological differences between fast and slow twitch fibres. The engaging PowerPoint and acccompanying resources have been designed to cover points 7.10 (i) & (ii) of the Edexcel International A-level Biology specification. The start of the lesson uses an identification key to emphasise that skeletal muscle differs from cardiac and smooth muscle due to its voluntary nature. It is important that key terminology is recognised so once myology has been revealed as the study of muscles, key structural terms like myofibril, myofilament and myosin can be introduced. Moving forwards, students will be shown the striated appearance of this muscle so they can recognise that some areas appear dark where both myofilaments are found and others as light as they only contain actin or myosin. A quiz competition is used to introduce the A band, I band and H zone and students then have to use the information given to label a diagram of the myofibril. This part of the lesson has been specifically planned to prepare the students for the upcoming lesson which describes the contraction of skeletal muscles by the sliding filament mechanism The rest of the lesson focuses on the structural and physiological differences between fast and slow twitch fibres and the following characteristics are covered: Reliance on the aerobic or anaerobic pathways to generate ATP Resistance to fatigue mitochondrial density capillary density myoglobin content (and colour) fibre diameter phosphocreatine content glycogen content A wide variety of tasks are used to cover this content and include knowledge recall and application of knowledge exam-style questions with fully-displayed mark schemes as well as quick quiz competitions to maintain motivation and engagement.
Temperature control in ECTOTHERMS (OCR A-level Biology A)
GJHeducationGJHeducation

Temperature control in ECTOTHERMS (OCR A-level Biology A)

(1)
This concise lesson has been written to cover specification point 5.1.1 (d) of the OCR A-level Biology A specification which states that students should be able to apply an understanding of the behavioural responses in temperature control in ectotherms. The main aim when designing the lesson was to support students in making sensible and accurate decisions when challenged to explain why these types of organisms have chosen to carry out a particular response. A wide range of animals are used so students are engaged in the content matter and are prepared for the unfamiliar situations that they will encounter in the final exam. Time is also taken to compare ectotherms against endotherms so that students can recognise the advantages and disadvantages of ectothermy. This lesson has been written for A-level students studying on the OCR A-level Biology A course. Lessons on temperature control in endotherms and the principles of homeostasis and cell signalling, which are also in module 5.1.1, are also available so please download those too as they will allow students to make connections between one lesson, the previous and the next.
OCR GCSE Biology B1 REVISION (Cell-level systems)
GJHeducationGJHeducation

OCR GCSE Biology B1 REVISION (Cell-level systems)

(1)
An engaging lesson presentation (65 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B1 (Cell-level systems) of the OCR Gateway A GCSE Biology specification The topics that are tested within the lesson include: Plant and animal cells Bacterial cells Light and electron microscopy DNA Transcription and translation Enzymes Photosynthesis Students will be engaged through the numerous activities including quiz rounds like “Shine a LIGHT on any errors" whilst crucially being able to recognise those areas which need further attention
Magnification, resolution and microscopes (CIE A-level Biology)
GJHeducationGJHeducation

Magnification, resolution and microscopes (CIE A-level Biology)

(1)
This fully-resourced lesson describes the differences between resolution and magnification, with reference to light and electron microscopy and the engaging PowerPoint and accompanying resources have been designed to cover the content of point 1.1 (d) of the CIE A-level Biology specification. To promote engagement and focus throughout these 3 lessons in topic 1.1 (The microscope in cell studies), the PowerPoint includes an ongoing quiz competition and a score sheet is found within the resources to keep track of the cumulative scores. The quiz rounds found in this lesson will introduce the objective lens powers, the names of the parts of a light microscope and emphasise some of the other key terms such as resolution. The final round checks on their understanding of the different numbers that were mentioned in the lesson, namely the differing maximum magnifications and resolutions. Time is taken to explain the meaning of both of these microscopic terms so that students will understand their importance when looking at the cell structures in topic 1.2. By the end of the lesson, the students will be able to explain how a light microscope uses light to form an image and will understand how electrons transmitted through a specimen or across the surface will form an image with a TEM or a SEM respectively. As detailed above, this lesson has been written to tie in with the previous lesson on measuring cells and units as well as the next lesson on calculating actual size.
Transcription (OCR A-level Biology)
GJHeducationGJHeducation

Transcription (OCR A-level Biology)

(1)
This detailed lesson explains how the process of transcription results in the production of the single-stranded nucleic acid, mRNA. Both the detailed PowerPoint and accompanying resource have been designed to specifically cover the third part of point 2.1.3 of the OCR A-level Biology A specification but also provides important information that students can use when being introduced to splicing and gene expression in module 6. The lesson begins by challenging the students to recognise that most of the nuclear DNA in eukaryotes does not code for polypeptides. This allows the promoter region and terminator region to be introduced, along with the structural gene. Through the use of an engaging quiz competition, students will learn that the strand of DNA involved in transcription is known as the template strand and the other strand is the coding strand. Links to previous lessons on DNA and RNA structure are made throughout and students are continuously challenged on their prior knowledge as well as they current understanding of the lesson topic. Moving forwards, the actual process of transcription is covered in a 7 step bullet point description where the students are asked to complete each passage using the information previously provided. So that they are prepared for module 6, students will learn that the RNA strand formed at the end of transcription in eukaryotes is a primary transcript called pre-mRNA and then the details of splicing are explained. An exam-style question is used to check on their understanding before the final task of the lesson looks at the journey of mRNA to the ribosome for the next stage of translation. This lesson has been written to challenge all abilities whilst ensuring that the most important details are fully explained.
CIE International A-level Biology TOPIC 18 REVISION (Biodiversity, classification and conservation)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 18 REVISION (Biodiversity, classification and conservation)

(1)
This fully-resourced REVISION LESSON is detailed and engaging and covers the content of topic 18 (Biodiversity, classification and conservation) of the CIE International A-level Biology specification. This topic is often viewed as less interesting than other topics by the students but is well represented in the exams in terms of questions and so a lot of time has gone into the design to include a wide range of activities which will allow them to assess their knowledge whilst remaining motivated. All of the exam questions have full answers so students can identify any missed marks and most of the tasks are differentiated to allow students of differing abilities to access the work and remain challenged. The lesson was planned to cover as much of the specification as possible but the following sub-topics have received particular attention: The biological classification of a species Using Simpsons Index of diversity to calculate the biodiversity of the habitat The reasons to maintain biodiversity Methods of protecting endangered species The use of assisted reproduction in conservation Different methods of sampling The taxonomic hierarchy The characteristic features of the domains and kingdoms Links to the other topics of the specification are made throughout the lesson and there is also a mathematical focus to ensure that the students are comfortable when presented with the numerical challenges Due to the extensiveness of this resource, it is likely to take at least 2 lessons to cover all of the activities
General structure of an amino acid (OCR A-level Biology)
GJHeducationGJHeducation

General structure of an amino acid (OCR A-level Biology)

(1)
This lesson describes the general structure of the 20 amino acids found in proteins and makes clear links to related topics such as genes. The PowerPoint has been designed to cover specification point 2.1.2 (k) of the OCR A-level Biology A course and provides a clear introduction to the following lesson on the formation of dipeptides and polypeptides. The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference. Students will be introduced to the existence of hydrophobic, hydrophilic, acidic and basic R groups so that they are able to apply this knowledge in future lessons where structure and shape is considered. Some time is also given to look at cysteine in greater detail due to the presence of sulfur atoms and once again a link is made to disulfide bridges for upcoming lessons. The lesson concludes with one more quiz round called LINK TO THE FUTURE where the students will see the roles played by amino acids in the later part of the course such as translation and in the formation of dipeptides.
Haemoglobin & collagen (CIE A-level Biology)
GJHeducationGJHeducation

Haemoglobin & collagen (CIE A-level Biology)

(1)
This detailed lesson uses haemoglobin and collagen to describe the relationship between the structure and functions of globular and fibrous proteins. The engaging PowerPoint and accompanying worksheet have been primarily designed to cover specification point 2.3 © of the CIE International A-level Biology course but due to the detailed coverage of haemoglobin, this resource could also be used when teaching a lesson on the role of this protein in topic 8. The first part of the lesson looks at the structure of haemoglobin, and describes how the presence of an iron-containing haem group on the outside of the 4 polypeptide chains explains its ability to form oxyhaemoglobin. Moving forwards, the importance of the solubility of this protein is considered and related to the direction that the hydrophobic R groups point. At this point of the lesson, the students are challenged to construct a comparison table which can be filled in as the lesson progresses and as they are given more details of collagen. The section of the lesson concerning collagen begins with the introduction of its function in the artery wall so that students can recognise how fibrous proteins have roles associated with mechanical strength. Time is taken to discuss their solubility as well as the presence of repetitive amino acid sequences. The remainder of the lesson considers four more proteins and the final task challenges the students to use their completed table to write a summary passage comparing globular and fibrous proteins.
Structure & functions of phospholipids (CIE A-level Biology)
GJHeducationGJHeducation

Structure & functions of phospholipids (CIE A-level Biology)

(1)
This engaging lesson describes the relationship between the structure and functions of a phopholipid, focusing on the role performed in membranes. The PowerPoint has been designed to cover specification point 2.2 (g) of the CIE International A-level Biology specification and includes constant references to the previous lesson on the structure and function of triglycerides. The role of a phospholipid in a cell membrane provides the backbone to the whole lesson. A quick quiz round called FAMILY AFFAIR challenges the students to use their knowledge of the structure of a triglyceride to identify the shared features in a phospholipid. This then allows the differences to be introduced, such as the presence of a phosphate group in place of the third fatty acid. Moving forwards, the students will learn that the two fatty acid tails are hydrophobic whilst the phosphate head is hydrophilic which leads into a key discussion point where the class has to consider how it is possible for the phospholipids to be arranged when both the inside and outside of a cell is an aqueous solution. The outcome of the discussion is the introduction of the phospholipid bilayer which is critical for the lesson in topic 4 on the fluid mosaic model. The final part of the lesson describes how proteins found floating in the cell membrane allow both facilitated diffusion and active transport to occur and this also helps to begin the preparations for the upcoming lessons.
Triglycerides (AQA A-level Biology)
GJHeducationGJHeducation

Triglycerides (AQA A-level Biology)

(1)
This fully-resourced lesson describes the relationship between the structure and properties of triglycerides and considers their roles in living organisms. The engaging PowerPoint and accompanying worksheets have been designed to cover the first part of point 1.3 of the AQA A-level Biology specification and links are also made to related future topics such as the importance of the myelin sheath for the conduction of an electrical impulse. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from topic 1.2 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.