A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
An informative lesson presentation (26 slides) that shows students how to convert between numbers and standard form (and the other way) so they are able to understand when these are used in Science questions. The lesson begins by guiding them through how to change numbers to standard form and explains when a power of 10 that is positive will be achieved and when it will be negative. Students are given the opportunity to see these used in a Science question and there is a cross-subject link as they are also required to convert between units. A number of competitions are used near the end of the lesson to maintain motivation and to allow the students to check their progress in a fun way
This lesson has been designed for GCSE students but is suitable for KS3
All of the lessons in this bundle are fully-resourced and have been designed to contain a wide range of activities that will challenge the students on their knowledge and understanding of the content of UNIT 2 of the WJEC GCSE Physics specification.
The engaging PowerPoints and accompanying resources cover the following topics:
Topic 2.1: Distance, speed and acceleration
Topic 2.3: Work and energy
Topic 2.4: Further motion concepts
Topic 2.7: Types of radiation
Topic 2.8: Half-life
Topic 2.9: Nuclear decay and nuclear energy
To fall in line with the heavy mathematical content of this course, the lessons challenge a range of skills including rearranging formulae, converting units, using standard form and significant figures and percentage change
If you would like to see the quality of the lessons, download the topic 2.3 lesson which has been shared for free
This revision lesson focuses on the properties of waves and the process of refraction as detailed in topic 6 of the AQA physics and combined specifications. Each task in the PowerPoint and accompanying resources challenges the students on their understanding of the key terms frequency, period, wavelength, amplitude, transverse and longitudinal, and reminds them how to answer refraction questions by using explanations that involve density, speed and the change in direction of the light wave.
This bundle of 6 lessons covers a lot of of the content in Topic P1 (Energy) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include:
Energy stores and systems
Kinetic and potential energy stores
Specific heat capacity
Conservation of energy
Reducing unwanted energy transfers
Efficiency
Energy resources
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This bundle of 6 lessons covers the majority of the content in Topic P4 (Atomic structure) of the AQA Trilogy GCSE Combined Science specification. The topics covered within these lessons include:
Developing the atomic model
Isotopes
Nuclear radiation
Decay equations
Half-life
Irradiation and contamination
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
This is an engaging and informative lesson that looks at the wires inside a UK plug and considers their role in terms of the supply of mains electricity. The safety features of the plug, such as the fuse, are also discussed so that students can understand how a particular fuse is chosen.
As the cover image shows, the lesson begins by challenging the students to use their knowledge of all three of the Sciences to come up with the three names of the wires. Some students will know that these are the wires in a UK plug but some wont. Key terminology such as three-core cable is used throughout, as well as a running theme with the colours, so that students become accustomed to identifying a particular wire by its plastic insulation. Through a range of tasks which encourage student discovery and educated predictions, the students will learn the functions of each of the wires as well as their potential difference. The fuse is introduced to the students and links are made to the electrical circuits topic by considering the resistance of the wire inside the fuse and challenging them to use the electrical power equation to calculate a current and choose an appropriate fuse for that plug. The aim of the lesson is to get students to absorb information as the lesson progresses in order to eventually label a black and white diagram of the plug. The last part of the lesson looks at two-core cables and then relates this back to the importance of the earth wire in a UK plug.
This lesson has been written for GCSE aged students but is suitable for use with younger students who are learning about this topic.
This bundle of 11 lessons covers a lot of the content in Topic P4 (Waves and radioactivity) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include:
Waves and their properties
Wave velocity
Reflection and Refraction
EM waves
Uses of EM waves
Isotopes
Radiation properties
Decay equations
Half-life
Background radiation
Dangers of radioactivity
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
A fast-paced lesson which includes an informative lesson presentation (20 slides) and a question worksheet. Together these resources guide GCSE students through the calculation questions that they can encounter on the topic of the conservation of momentum.
The lesson begins by introducing the law of the conservation of momentum and reminding students of the equation which links momentum, mass and velocity that they are expected to recall for the GCSE exam. Time is taken to inform them of the two types of question which tend to arise on this topic - those where the masses lock together during the event and those where they remain as separate masses. Students are guided through both of these types of questions with worked examples to enable them to visualise how to begin and set out their workings. Key mathematical skills are involved such as rearranging the formula so this is also shown. Students are given the opportunity to apply these skills to a series of questions on the worksheet and the mark schemes are displayed so they can assess once completed.
A resourced lesson which looks at calculating acceleration using the (v-u)/t equation. This lesson includes an engaging lesson presentation (26 slides) and a worksheet of questions that can be used for homework or during the lesson. The lesson begins by looking at the actual meaning of acceleration, ensuring that students understand it is a rate and therefore recognise the units as a result. A number of engaging activities are included in the lesson, such as the ACCELERATION OLYMPICS, to maintain motivation. Students are shown how to rearrange the equation to make velocity or time the subject and then challenged to apply these in a series of questions. Deceleration is briefly mentioned at the end of the lesson.
This lesson has been primarily designed for students studying GCSE (14 - 16 year olds in the UK) but it is suitable for students at KS3 too.
This lesson describes the key difference between scalar and vector quantities and introduces examples of physical factors that fit into each group. The PowerPoint has been designed to cover points 2.1 - 2.4 of the Edexcel GCSE Physics and Combined Science specifications.
The lesson begins with an introduction of the fact that some quantities are scalar and some are vector. A quick competition is used to introduce the key term, magnitude, and students will learn that scalar quantities such as speed have a size but are missing something else. A guided discussion period then challenges them to consider what that missing element might be, and this leads into the completion of the scalar definition. The next task then challenges the students to use this completed definition to write a similar one for a vector quantity. They will learn that velocity is a vector due to its magnitude and specific direction and then a series of exam questions are used to challenge their current understanding in terms of changes in speed and velocity at a crossroads. The mark scheme for each of the questions is embedded into the PowerPoint.
The remainder of the lesson uses another competition to introduce acceleration, momentum, energy, force, mass and weight as scalar or vector quantities and the students are challenged one final time as they have to explain why weight is an example of a vector quantity.
A fully-resourced lesson that looks at the meaning of thinking, braking and stopping distances and focuses on the factors that would cause each of them to increase. The lesson includes an engaging lesson presentation (45 slides) and an associated worksheet for the calculations. The lesson begins by introducing the term stopping distance and then challenging students to recognise that both the distance travelled during the driver’s reaction time and under the braking force will contribute to this. Students are constantly challenged to think about the factors that would cause either the thinking or braking distance to increase and to be able to explain why scientifically. Moving forwards, the mathematical element that is associated with this topic is explored as students are shown how to calculate the braking distance at different speeds as well as convert between speeds in miles per hour and metres per second. There is also a set homework included as part of the lesson. There are regular progress checks written into the lesson so that students can assess their understanding.
This lesson has been written for GCSE students but could be used with those at KS3.
An engaging, practical-based lesson presentation (34 slides), accompanied by a practical worksheet and differentiated questions worksheet, which together guide students through the different calculation questions which involve the half-life. The lesson begins by introducing the students to the definition of a half-life and then showing them an example with I-131 so they can visualise how the half-life doesn’t change (and that radioactivity is measured in Bq). Moving forwards, the students will follow the given instructions to create the results to plot a decay curve and will be shown how to use this curve to determine the half-life of an isotope. The remainder of the lesson focuses on the different calculation questions that can be found on exam papers and uses a step by step guide to help them to handle the increasing difficulty. Students will be challenged to apply their new found knowledge to a set of 5 questions and this worksheet has been differentiated two ways so that those who need extra assistance, can still access the learning. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding.
This lesson has been designed for GCSE students (14 - 16 years old in the UK)
This bundle of 20 fully-resourced lessons have been designed to allow students who are studying the AQA GCSE Combined Science course to assess their understanding of the topics found within the following units of the specification:
B1: Cell Biology
B2: Organisation
B4: Bioenergetics
B5: Homeostasis and response
B6: Inheritance, variation and evolution
B7: Ecology
C1: Atomic structure and the periodic table
C2: Bonding, structure and properties of matter
C3: Quantitative chemistry
C4: Chemical changes
C5: Energy changes
C6: The rate and extent of chemical change
C7: Organic chemistry
C8: Chemical analysis
C9: Chemistry of the atmosphere
P1: Energy
P2: Electricity
P4: Atomic structure
P5: Forces
P6: Waves
These lessons use a range of exam questions, understanding checks, quick tasks and quiz competitions to engage and motivate the students
This is a fully-resourced revision lesson that could be used over a series of lessons to help students to revise and assess their knowledge of the content in topics P1 (Matter), P2 (Forces) and P3 (Electricity and magnetism) of the OCR Gateway A GCSE Combined Science specifiction which can be assessed in paper 5. This revision lesson uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to cover the following sub-topics and specification points:
Describe how and why the atomic model has changed over time
Describe the structure of the atom and the charges of the particles
Define the term specific latent heat
Conversions from non S.I. units to S.I. units
Explain the vector-scalar distinction
Recall examples in which objects interact
Represent forces as vectors by drawing free-body diagrams
Know the definition of Newton’s three laws of motion
Define momentum and describe examples of momentum in collisions
Recall and apply Newton’s third law
Describe the relationship between force and the extension of a spring
Calculate the spring constant in linear cases
Define mass and weight
Recall that current depends upon both potential difference and resistance
Recall and apply the relationship between I, R and V
Show that Fleming’s left hand rule represents the relative orientations of current, magnetic field and force
This lesson contains a big emphasis on the mathematical calculations that will be involved in these exams, and as a result students are challenged to recall the equations and to apply them.
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams. A lot of the tasks have been differentiated so that students of all abilities can access the work and be challenged appropriately.
This is a fully-resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content found within Topic P6 (Radioactivity) of the Edexcel GCSE Combined Science specification.
The sub-topics and specification points that are tested within the lesson include:
Describe the structure of an atom, including the charge and mass of the subatomic particles
Describe the structure of nuclei of isotopes
Be able to explain why an atom is neutral
Recall the radiation that can be emitted from an unstable nucleus
Explain what is meant by background radiation and know the origins of this radiation
Recall that an alpha particle is equivalent to a helium nucleus
Compare alpha, beta and gamma radiations in terms of their abilities to penetrate and ionise
Describe the processes of beta plus and beta minus decay
Explain the effects on the atomic and mass number of radioactive decays
Balance nuclear decay equations
Recall that the unit of activity of a radioactive isotope is the Becquerel
Use the concept of half life to carry out simple calculations
Describe the differences between contamination and irradiation
Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual GCSE terminal exams
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quiz tasks and quiz competitions to enable students to assess their understanding of the content within topic 3 (Properties of waves, including light and sound) of the Cambridge IGCSE Physics (0625) specification. The lesson covers the content in both the core and supplement sections of the specification and therefore can be used with students who will be taking the extended papers as well as the core papers.
The specification points that are covered in this revision lesson include:
Give the meaning of the terms speed, frequency, wavelength and amplitude
Distinguish between longitudinal and transverse waves and be able to give suitable examples of each
Recall and use the equation velocity = frequency x wavelength
Describe how waves can undergo reflection, refraction and diffraction
Describe how wavelength affects diffraction
Describe an experimental demonstration of the refraction of light
Be able to define refractive index and recall the equation to calculate
Give the meaning of the critical angle and recall the equation to calculate
Describe total internal reflection and be able to explain the use of optical fibres in medicine
The electromagnetic spectrum
Describe the longitudinal nature of sound waves
State the approximate range of audible frequencies for a healthy human
Show an understanding of the term ultrasound
Describe an experiment to determine the speed of sound in air
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “Should you WAVE goodbye” where they have to decide if a passage is 100% factually correct or not whilst crucially being able to recognise the areas of this topic which need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
This bundle of 8 revision lessons uses a range of activities that include exam questions (with clearly explained answers), differentiated tasks and quiz competitions to engage students whilst they are revising the following topics that are found on the AQA GCSE Physics specification:
Topic 1: Energy
Topic 2: Electricity
Topic 3: Particle model of matter
Topic 4: Atomic structure
Topic 5: Forces
Topic 6: Waves
Topic 7: Magnetism and electromagnetism
Topic 8: Space Physics
These lessons can be used for revision at the end of the topic or in the lead up to the mocks or actual GCSE exams so that students can assess the areas of the specification which need their further attention
If you want to see the quality of the lessons, download the topic 1 and 5 lessons as these are free
This is a detailed REVISION lesson that contains an engaging powerpoint (99 slides) and is fully-resourced with associated worksheets. The lesson uses a range of activities which include exam questions (with displayed answers), differentiated tasks and quiz competitions to engage students whilst they assess their knowledge of the content that is found within topic 8 (Global challenges) of the OCR GCSE Physics A specification.
The following specification points are covered in this lesson:
Explain the factors which affect the distance required for road transport vehicles to come to rest in emergencies and the implications for safety
Estimate how the distances required for road vehicles to stop in an emergency, varies over a range of typical speeds
Estimate the forces involved in typical situations on a public road
Describe the main energy sources available for use on Earth, compare the ways in which they are used and distinguish between renewable and non-renewable sources
Explain patterns and trends in the use of energy resources
Recall that step-up and step-down transformers are used to change the potential difference as power is transferred from power stations
Link the potential differences and numbers of turns of a transformer to the power transfer involved; relate this to the advantages of power transmission at high voltages
Recall that the domestic supply in the UK is a.c. at 50Hz and about 230 volts
Recall the differences in function between the live, neutral and earth mains wires, and the potential differences between these wires
Explain the red-shift of light as seen from galaxies which are receding (qualitative only). The change with distance of each galaxy’s speed is evidence of an expanding universe
Explain how red shift and other evidence can be linked to the Big-Bang model
Recall that our Sun was formed from dust and gas drawn together by gravity and explain how this caused fusion reactions, leading to equilibrium between gravitational collapse and expansion due to the energy released during fusion
Recall the main features of our solar system, including the similarities and distinctions between the planets and their moons
Due to the size of this revision lesson, it is likely to be used over the course of a number of lessons and can also be used throughout the duration of the GCSE course, as an end of topic revision lesson or as lessons in the lead up to mocks or the actual GCSE exams
A fully-resourced lesson which looks at the calculation of a turning force and uses this to apply the principle of moments. The lesson includes an engaging and informative lesson presentation (24 slides) and a series of worksheets, some of which contain questions which have been differentiated. The lesson begins by getting the students to read through the scene from Friends which involves the famous “PIVOT”. This word has been removed from the scene and so students have to work out what it is and how it could relate to a Physics lesson. The rest of the lesson focuses on the range of calculation questions that students can face, which get progressively more difficult. At each stage of the lesson, students are guided through examples and given hints on points to be conscious of so that any silly mistakes can be eradicated. The principle of moments question worksheet has been differentiated two ways so that those students who need extra assistance are still able to access the learning. A homework question is also included in the lesson.
This lesson has been written for GCSE students but should higher ability KS3 students want to really test themselves, it could be used with them.
This is a detailed and engaging REVISION lesson which is fully-resourced and uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 7 (Radioactivity and particles) of the Pearson Edexcel IGCSE Physics 9-1 specification (4PH1) for first assessment in June 2019.
The specification points that are covered in this revision lesson include:
Use the following units: becquerel (Bq), centimetre (cm), hour (h), minute (min) and second (s)
Describe the structure of an atom in terms of protons, neutrons and electrons and use symbols to represent isotopes
Know the terms atomic (proton) number, mass (nucleon) number and isotope
Know that alpha (α) particles, beta (β−) particles, and gamma (γ) rays are ionising radiations emitted from unstable nuclei in a random process
Describe the nature of alpha (α) particles, beta (β−) particles, and gamma (γ) rays, and recall that they may be distinguished in terms of penetrating power and ability to ionise
Describe the effects on the atomic and mass numbers of a nucleus of the emission of each types of radiation
Understand how to balance nuclear equations in terms of mass and charge
Know that the activity of a radioactive source decreases over a period of time and is measured in becquerels
Know the definition of the term half-life and understand that it is different for different radioactive isotopes
Use the concept of the half-life to carry out simple calculations on activity
Know that nuclear reactions, including fission, fusion and radioactive decay, can be a source of energy
Understand how a nucleus of U-235 can be split (the process of fission) by collision with a neutron, and that this process releases energy as kinetic energy of the fission products
Know that the fission of U-235 produces two radioactive daughter nuclei and a small number of neutrons
Describe how a chain reaction can be set up if the neutrons produced by one fission strike other U-235 nuclei
Explain the difference between nuclear fusion and nuclear fission
Describe nuclear fusion as the creation of larger nuclei resulting in a loss of mass from smaller nuclei, accompanied by a release of energy
Know that fusion is the energy source for stars
The students will thoroughly enjoy the range of activities, which include quiz competitions such as “It’s as easy as ABG” where they have to compete to be the 1st to form a word by using clues about the different types of radiation whilst all the time evaluating and assessing which areas of this topic will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual International GCSE exams