A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
An engaging lesson presentation (33 slides) and associated worksheets that introduces students to classification using the taxonomic levels and teaches them how to name species using the binomial naming system. The students are told about the domain system, as developed by Carl Woese, but then the lesson focuses on showing them the seven levels that come after this. Students are challenged to understand how the levels differ from each other in terms of sharing characteristics. Time is taken to focus on the five kingdoms and links are made to other topics such as prokaryotic cells to test their previous knowledge. Moving forwards, students are shown how the genus and species are used in the binomial naming system before being given lots of opportunities to assess their understanding through questions.
This lesson has been written for GCSE students but is suitable for all age ranges
This highly detailed, fully-resourced lesson has been designed to cover the content of specification point 5.1.4 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the regulation of blood glucose concentration. There is focus on the negative feedback mechanisms that release insulin or glucagon and the role of the liver. It challenges the students recall of the control of insulin release from the beta cells which was taught in an earlier lesson.
A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis.
This lesson has been written for students studying on the OCR A-level Biology A course and ties in with the lesson on the differences between type I and II diabetes mellitus as well as the human endocrine system
This bundle contains 17 fully-resourced and detailed lessons that have been designed to cover the content of topic 7 of the AQA A-level Biology specification which concerns genetics, populations, evolution and ecosystems. The wide range of activities included in each lesson will engage the students whilst the detailed content is covered and the understanding and previous knowledge checks allow them to assess their progress on the current topic as well as challenging them to make links to other related topics. Most of the tasks are differentiated to allow differing abilities to access the work and be challenged.
The following sub-topics are covered in this bundle of lessons:
The use of genetic terminology
The inheritance of one or two genes in monohybrid and dihybrid crosses
Codominant and multiple alleles
The inheritance of sex-linked characteristics
Autosomal linkage
Epistasis as a gene interaction
The use of the chi-squared test
Species exist as one or more populations
The concepts of gene pool and allele frequency
Calculating allele frequencies using the Hardy-Weinberg principle
Causes of phenotypic variation
Stabilising, directional and disruptive selection
Genetic drift
Allopatric and sympatric speciation
Species, populations, communities and ecosystems
Factors affecting the populations in ecosystems
Estimating the size of a population using randomly placed quadrats, transects and the mark-release-recapture method
Primary succession, from colonisation by pioneer species to climax community
Conservation of habitats frequently involves the management of succession
This is one of the 8 topics which have to be covered over the length of the 2 year course and therefore it is expected that the teaching time for this bundle will be in excess of 2 months
If you want to see the quality of the lessons before purchasing then the lessons on codominant and multiple alleles, epistasis and phenotypic variation are free resources to download
This detailed lesson introduces the 3 main principles of the cell theory and describes how cells are organised into tissues, organs and organ systems. The engaging PowerPoint and accompanying resources have been designed to cover points 2.1 (i) & (ii) of the Edexcel A-level Biology B specification.
The cell theory is introduced at the start of the lesson and the 1st principle is immediately discussed to ensure that students are aware that all living organisms are made of cells. This principle is discussed with relation to viruses to enable students to understand that the lack of cell structure in a virus is one of the reasons that they are not considered to be living. The second principle states that the cell is the basic unit of structure and organisation and this leads into the main part of the lesson where specialised cells and their groupings into tissues are considered. Students are challenged to compare an amoeba against a human to get them to focus on the difference in the SA/V ratio. This acts as an introduction into the process of differentiation and a recognition of its importance for multicellular organisms. Students will discover that a zygote is a stem cell which can express all of the genes in its genome and divide by mitosis. Time is then taken to introduce gene expression as this will need to be understood in the later topics of the course. Moving forwards, the lesson uses the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students will understand why the shape and arrangement of these cells differ in the trachea and alveoli in line with function. The link between specialised cells and tissues is made at this point of the lesson with these examples of epithelium and students will also see how tissues are grouped into organs and then into organ systems. The third principle states that cells arise from pre-existing cells and this will be demonstrated later in topic 2 with mitosis and meiosis.
This concise lesson acts as an introduction to topic 5.3, Energy and Ecosystems, and describes how plant biomass is formed, measured and estimated. The engaging PowerPoint is the 1st in a series of 3 lessons which have been designed to cover the detailed content of topic 5.3 of the AQA A-level Biology specification.
A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller:
community
ecosystem
abiotic factor
photosynthesis
respiratory substrate
biomass
calorimetry
The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Due to the clear link to photosynthesis, a series of prior knowledge checks are used to challenge the students on their knowledge of this cellular reaction but as this is the first lesson in the topic, the final section of the lesson looks forwards and introduces the chemical energy store in the plant biomass as NPP and students will also meet GPP and R so they are partially prepared for the next lesson.
This lesson describes the relationship between the size of an organism or structure and its surface to volume ratio. The PowerPoint and accompanying worksheets have been designed to cover point 3.1 of the AQA A-level Biology specification and also have been specifically planned to prepare the students for the upcoming lessons in topic 3 on gas exchange and absorption in the ileum.
The students are likely to have been introduced to the ratio at GCSE, but understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of the surface area to volume ratio in order to increase this relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson that walks them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of larger organisms to increase the ratio at their exchange surfaces is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. This is further demonstrated by the villi and the microvilli on the enterocytes that form the epithelial lining of these folds in the ileum. The final part of the lesson introduces Fick’s law of diffusion so that students are reminded that the steepness of a concentration gradient and the thickness of a membrane also affect the rate of diffusion.
A fully resourced lesson which includes an informative lesson presentation (34 slides) and differentiated worksheets that show students how to convert between units so they are confident to carry out these conversions when required in Science questions. The conversions which are regularly seen at GCSE are covered as well as some more obscure ones which students have to be aware of. A number of quiz competitions are used throughout the lesson to maintain motivation and to allow the students to check their progress in an engaging way
This lesson has been designed for GCSE students but is suitable for KS3
All 7 of the lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 5.2 (Respiration) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include:
Respiration produces ATP
Glycolysis as the first stage of aerobic and anaerobic respiration
The phosphorylation of glucose and the production and oxidation of triose phosphate
The production of lactate or ethanol in anaerobic conditions
The Link reaction
The oxidation-reduction reactions of the Krebs cycle
The synthesis of ATP by oxidative phosphorylation
The chemiosmotic theory
Lipids and proteins as respiratory substrates
The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other sub-topics within this topic and earlier topics
If you would like to see the quality of the lessons, download the anaerobic respiration and oxidative phosphorylation lessons as these have been uploaded for free
This fully-resourced lesson describes how the eukaryotic cells of complex multicellular organisms become specialised for specific functions. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the 3rd part of point 2.1.1 of the AQA A-level Biology specification and also describes how these specialised cells are organised into tissues, organs and organ systems.
The start of the lesson focuses on the difference in the SA/V ratio of an amoeba and a human in order to begin to explain why the process of differentiation is critical for multicellular organisms. Students will discover that a zygote is a stem cell which can express all of the genes in its genome and divide by mitosis. Time is then taken to introduce gene expression as this will need to be understood in the later topics of the course. Moving forwards, the lesson uses the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students will understand why the shape and arrangement of these cells differ in the trachea and alveoli in line with function. The link between specialised cells and tissues is made at this point of the lesson with these examples of epithelium and students will also see how tissues are grouped into organs and then into organ systems.
The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy mesophyll cells and the guard cells are covered at length and in detail. Step by step guides will support the students so that they can recognise the importance of the structures and links are made to upcoming topics such as diffusion, active transport and osmosis so that students are prepared for these when covered in the future.
This lesson has been written to continually tie in with the previous two lessons in this specification point which are uploaded under the titles of the structure of eukaryotic animal and plant cells.
Each of the 20 revision lessons included in this bundle has been designed to motivate and engage the students whilst they are challenged on their knowledge of the content of the OCR A-Level Biology A specification. The detailed PowerPoints contain a wide range of activities which include exam questions with explained answers, differentiated tasks and quiz competitions that are supported by the accompanying worksheets.
The modules covered in this bundle are:
Module 2.1.1: Cell structure
Module 2.1.2: Biological molecules
Module 2.1.3: Nucleotides and nucleic acids
Module 2.1.4: Enzymes
Module 2.1.5: Biological membranes
Module 2.1.6: Cell division, cell diversity and cellular organisation
Module 3.1.2: Transport in animals
Module 3.1.3: Transport in plants
Module 4.1.1: Communicable diseases, disease prevention and the immune system
Module 4.2.1: Biodiversity
Module 4.2.2: Classification and evolution
Module 5.1.2: Excretion as an example of homeostatic control
Module 5.1.3: Neuronal communication
Module 5.1.4: Hormonal communication
Module 5.1.5: Plant and Animal responses
Module 5.2.1: Photosynthesis
Module 5.2.2: Respiration
Module 6.1.1: Cellular control
Module 6.1.2: Pattens of inheritance
Module 6.1.3: Manipulating genomes
Helpful hints are provided throughout the lessons to help the students with exam technique and in structuring their answers. These lessons are suitable for use throughout the course and can be used for revision purposes at the end of a module or in the lead up to mocks or the actual A LEVEL exams
This bundle of 4 revision lessons covers the content in topics 1 - 4 of the AQA A-level Biology specification that are taught during year 12 (AS) of the two-year course.
Each of the lessons has been designed to include a range of exam questions, differentiated tasks and quiz competitions that will motivate the students whilst they evaluate their understanding of the different sub-topics.
Helpful hints are given throughout the lesson to aid the students in structuring their answers and the mathematical elements of the course are constantly challenged as well.
The 4 topics covered by this bundle are:
Topic 1:Biological molecules
Topic 2: Cells
Topic 3: Organisms exchange substances with their environment
Topic 4: Genetic information, variation and relationships between organisms
This lesson explains how to calculate the mitotic index and then explores what a high value may indicate about the tissue that was sampled. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 3 which have been planned to cover the content of point 2.2 of the AQA A-level biology specification.
As shown in the cover image, the lesson begins with a bit of fun, as the students are challenged to use three clues to identify three uses of the term index in biology. They’ll learn that the index of diversity is covered in a topic 4 lesson and that this lesson focuses on the mitotic index. The students are challenged on their knowledge of the mitotic cell cycle throughout the lesson and one of these questions is used to introduce the meaning of the index and the formula. A series of exam-style questions challenge them to apply their understanding, and the answers are embedded into the PowerPoint to enable the students to assess their progress. Moving forwards, the different meanings of high values are considered, including growing and repairing tissues, and then to explain how an elevated mitotic index can indicate that cell division has become uncontrolled. This prepares students for the next lesson where tumour formation and cancer will be covered.
This bundle of detailed lesson PowerPoints and accompanying resources have been designed to cover the content of topic 5.1 (Photosynthesis) in the AQA A-level Biology specification. This cellular reaction can prove difficult for the students to understand, so extra planning has gone into these 4 lessons to ensure that the key details of the reactions are embedded and understanding is constantly checked through a variety of activities. All of the exam-style questions which are used in these current understanding and prior knowledge checks have mark schemes that are included in the PowerPoint to allow the students to assess their work.
If you would like to sample the quality of these lessons, download the chloroplast structure lesson as this has been uploaded for free.
As the 1st topic on the Pearson Edexcel A-level Biology A (Salters Nuffield) course, the Lifestyle, health and risk topic is extremely important to introduce the students to the detail needed for success in this subject. Extensive planning has gone into all 10 lessons included in this bundle to motivate and engage the students whilst covering the following specification points:
The importance of water
The structure and function of blood vessels
The cardiac cycle and the relationship between the structure and operation of the heart to its function
The course of events that lead to atherosclerosis
The blood clotting process
The differences between monosaccharides, disaccharides and polysaccharides
The structure and role of the monosaccharides
Understand how monosaccharides join to form disaccharides and polysaccharides through condensation reactions and are split through hydrolysis reactions
The relationship between the structure and roles of the polysaccharides
The synthesis of a triglyceride by the formation of ester bonds between glycerol and fatty acids
The difference between saturated and unsaturated lipids
The PowerPoints and accompanying resources contain a wide variety of tasks which include exam-style questions with mark schemes, guided discussion points and quick quiz competitions.
This lesson bundle contains 9 lesson PowerPoints and their accompanying resources which have been intricately planned to deliver the detailed content of topic 6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and to make links to the 5 previously covered topics. In addition to the detailed content, each lesson contains exam-style questions with mark schemes embedded into the PowerPoint, differentiated tasks, guided discussion points and quick quiz competitions to introduce key terms and values in a fun and memorable way.
The following specification points are covered by the lessons in this bundle:
DNA can be amplified using the PCR
Comparing the structure of bacteria and viruses
Understand how Mycobacterium tuberculosis and human immunodeficiency virus infact human cells
The non-specific responses of the body to infection
The roles of antigens and antibodies in the body’s immune response
The differences in the roles of the B and T cells in the body’s immune response
Understand how one gene can give rise to more than one protein
The development of immunity
The major routes that pathogens may take when entering the body
The role of barriers in protecting the body from infection
The difference between bacteriostatic and bactericidal antibiotics
If you would like to sample the quality of the lessons in this bundle, then download the immune response and post-transcriptional changes lessons as these have been uploaded for free
This lesson describes the development and spread of antibiotic resistance in bacteria and discusses the difficulties in controlling this spread. The PowerPoint and accompanying worksheet have been designed to cover specification points 6.4 (i & ii) of the Edexcel A-level Biology B specification
President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of the development of resistance by evolution through natural selection. The main task of the lesson challenges the students to form a description to explain how this strain of bacteria developed resistance to methicillin, making use of the five key terms emphasised above. Moving forwards, there is a focus on the hospital as the common location for MRSA infections and students will recognise that this opportunistic pathogen can infect through open wounds to cause sepsis and potentially death. Figures from infections and deaths in hospitals in the US are used to increase the relevance and students will learn how a MRSA prevention program in VHA facilities includes screening of surgery patients to try to reduce its impact. The lesson concludes with a discussion about other methods that can be used by hospitals and general practitioners to reduce the spread of MRSA and to try to prevent the development of resistance in other strains.
This fully-resourced lesson explores the inheritance of sex-linked diseases in humans and then challenges the students to apply their knowledge to examples in other animals. The detailed PowerPoint and associated differentiated resources have been designed to cover the part of point 7.1 of the AQA A-level specification which states that students should be able to use fully-labelled genetic diagrams to predict the results of crosses involving sex-linkage.
Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to carry out a dihybrid cross that involves a sex-linked disease and an autosomal disease before applying their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender.
All of the tasks are differentiated so that students of differing abilities can access the work and all exam questions have fully-explained, visual markschemes to allow them to assess their progress and address any misconceptions
This lesson describes how genetic diversity within, or between species, can be investigated by comparison of characteristics or biological molecules. The PowerPoint and accompanying worksheets are primarily designed to cover the content of point 4.7 of the AQA A-level Biology specification but as this is the last lesson in the topic, it has also been planned to contain a range of questions, tasks and quiz rounds that will challenge the students on their knowledge and understanding of topic 4.
Over the course of the lesson, the students will discover that comparisons of measurable or observable characteristics, DNA and mRNA sequences and the primary structure of common proteins can all be used to investigate diversity. Links are continually made to prior learning, such as the existence of convergent evolution as evidence of the need to compare biological molecules as opposed to the simple comparison of phenotypes. The issues associated with a limited genetic diversity are discussed and the interesting biological example of the congenital dysfunctions consistently found in the Sumatran tigers in captivity in Australia and New Zealand is used to demonstrate the problems of a small gene pool. Moving forwards, the study of the 16S ribosomal RNA gene by Carl Woese is introduced and students will learn that this led to the adoption of the three-domain system in 1990. The final part of the lesson describes how the primary structure of proteins like cytochrome c that is involved in respiration and is therefore found in most living organisms can be compared and challenges the students to demonstrate their understanding of protein synthesis when considering the differences between humans and rhesus monkeys.
This detailed lesson describes the structure and properties of the cell membrane, focusing on the phospholipid bilayer and membrane proteins. Fully resourced, the PowerPoint and accompanying worksheets have been designed to cover the first part of point 2.3 of the AQA A-level Biology specification and clear links are made to Singer and Nicholson’s fluid mosaic model
The fluid mosaic model is introduced at the start of the lesson so that it can be referenced at appropriate points throughout the lesson. Students were introduced to phospholipids in topic 1 and so an initial task challenges them to spot the errors in a passage describing the structure and properties of this molecule. This reminds them of the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are used and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
This is a detailed and engaging lesson presentation (59 slides) that combines exam questions and progress checks along with quiz competition rounds to enable students to assess their understanding of the specification content within topics C1 - 3 of the OCR GCSE Combined Science Gateway A 9 - 1 as can be assessed in Paper 3.
All of the exam questions and progress checks have displayed answers as well as sections where content is recapped so that students can understand how an answer was obtained.
The revision rounds in the competition include “The need to BALANCE”, “Number crazy” and “React to the REACTION”.
This lesson has been designed for GCSE students.