Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Active transport, endocytosis & exocytosis (OCR A-level Biology)
GJHeducationGJHeducation

Active transport, endocytosis & exocytosis (OCR A-level Biology)

(0)
This fully-resourced lesson describes the movement of molecules by active transport, endocytosis and exocytosis, which are all active process that require ATP. The PowerPoint and accompanying worksheets have been designed to cover the second part of point 2.1.5 (d) [i] of the OCR A-level Biology A specification. The first part of this specification point, concerning simple and facilitated diffusion, was covered in the previous lesson. The start of the lesson challenges the students to use their prior knowledge of biological molecules to come up with the abbreviation ATP. Students were introduced to this molecule in module 2.1.3, so a series of prior knowledge questions are used to check on their recall of the structure and properties of ATP. Students are also reminded that the hydrolysis of ATP can be coupled to energy-requiring reactions within the cell and the rest of the lesson focuses on the use of this energy input for active transport, endocytosis and exocytosis. Students are challenged to answer a series of questions which compare active transport against the forms of passive transport and to use data from a bar chart to support this form of transport. In answering these questions they will discover that carrier proteins are specific to certain molecules and time is taken to look at the exact mechanism of these transmembrane proteins. A quick quiz round introduces endocytosis and the students will see how vesicles are involved along with the energy source of ATP to move large substances in or out of the cell. The lesson concludes with a link to a future topic as the students are shown how exocytosis is involved in a synapse.
Transcription factors & the lac operon (OCR A-level Biology)
GJHeducationGJHeducation

Transcription factors & the lac operon (OCR A-level Biology)

(0)
This fully-resourced lesson describes the regulatory mechanisms that control gene expression at a transcriptional level. The detailed PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.1 (b) as detailed in the OCR A-level Biology A specification which states that the students knowledge should include the lac operon and examples of transcription factors in eukaryotes. . This is one of the more difficult concepts in this A-level course and therefore key points are reiterated throughout this lesson to increase the likelihood of student understanding and to support them when trying to make links to actual biological examples in living organisms. There is a clear connection to transcription and translation as covered in module 2.1.3, so the lesson begins by reminding students that in addition to the structural gene in a transcription unit, there is the promotor region where RNA polymerase binds. Students are introduced to the idea of transcription factors and will understand how these molecules can activate or repress transcription by enabling or preventing the binding of the enzyme. At this point, students are challenged on their current understanding with a series of questions about DELLA proteins so they can see how these molecules prevent the binding of RNA polymerase. Their understanding is then tested again with another example with oestrogen and the ER receptor. The final and main section of the lesson focuses on the lac operon and immediately an opportunity is taken to challenge their knowledge of biological molecules with a task where they have to spot the errors in a passage describing the formation and breakdown of this disaccharide. Students will be able to visualise the different structures that are found in this operon and time is taken to go through the individual functions. A step by step guide is used to walk students through the sequence of events that occur when lactose is absent and when it is present before they are challenged to apply their understanding to an exam question.
Control of ventilation rate (Edexcel A-level Biology A)
GJHeducationGJHeducation

Control of ventilation rate (Edexcel A-level Biology A)

(0)
This detailed lesson describes how changes in ventilation rate are brought about to allow for the delivery of oxygen and the removal of carbon dioxide. The engaging PowerPoint and accompanying resources have been designed to cover the second part of point 7.9 (ii) in the Pearson Edexcel A-level Biology A specification. The previous lesson described the control of heart rate so this lesson has been written to tie in with this and to use this knowledge to further the students understanding of the control of ventilation rate. The lesson begins with a focus on the muscles involved in ventilation, specifically the diaphragm and external intercostal muscles, so that students can understand how their contraction results in an increase in the volume of the thoracic cavity. Boyle’s law is briefly introduced to allow students to recognise the relationship between volume and pressure so that the movement of air with the pressure gradient can be described. Time is then taken to consider the importance of inhalation and an exam-style question challenges the students to explain that a constant supply of oxygen to the alveoli is needed to maintain a steep concentration gradient with the surrounding capillaries. The students are then tasked with writing a description of exhalation at rest using the description of inhalation as their guide. The rest of the lesson focuses on the mechanisms involved in increasing the rate and depth of breathing during exercise. Students will use their knowledge of the control of heart rate to recall that chemoreceptors detect changes in oxygen and carbon dioxide and blood pH and that the medulla oblongata processes the sensory information that it receives before coordinating a response. The final task challenges them to use the information provided in this lesson and the previous one to order 10 detailed descriptions so they can form a complete passage about this control system.
The blood clotting process (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

The blood clotting process (Pearson Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the blood clotting process and includes the release of thromboplastin and the subsequent conversions to thrombin and fibrin. The engaging PowerPoint and accompanying worksheets have been primarily designed to cover the content detailed in point 1.6 of the Pearson Edexcel A-level Biology A specification but time has been taken to look at haemophilia as a sex-linked disease so that students are prepared for sex-linkage when covered in topic 3. The lesson begins with the introduction of clotting factors as integral parts of the blood clotting process and explains that factor III, thromboplastin, needs to recalled as well as the events that immediately precede and follows its release. Students will learn how damage to the lining and the exposure of collagen triggers the release of this factor and how a cascade of events then results. Quick quiz rounds and tasks are used to introduce the names of the other substances involved which are prothrombin, thrombin, fibrinogen and fibrin. In a link to the upcoming topic of proteins, students will understand how the insolubility of fibrin enables this mesh of fibres to trap platelets and red blood cells and to form the permanent clot. In the previous lessons, students described the events in atherosclerosis and a link is made to the role of blood clotting in CVD. The final part of the lesson introduces haemophilia as a sex-linked disease and students are challenged to apply their knowledge to an unfamiliar situation as they have to write genotypes and determine phenotypes before explaining why men are more likely to suffer from this disease than women.
Adaptations (AQA A-level Biology)
GJHeducationGJHeducation

Adaptations (AQA A-level Biology)

(0)
This fully-resourced lesson describes how natural selection results in species with anatomical, behavioural and physiological adaptations. The engaging and detailed PowerPoint and accompanying resources have been designed to cover the fourth part of point 4.4 of the AQA A-level Biology specification and make continual links to the earlier parts of this topic including evolution and genetics. A quick quiz competition at the start of the lesson introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links are made to the upcoming topic of taxonomy so that students are prepared for this lesson on species and classification hierarchy.
Ultrastructure of prokaryotic cells (Edexcel A-level Biology A)
GJHeducationGJHeducation

Ultrastructure of prokaryotic cells (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes the ultrastructure of a prokaryotic cell including the cell wall, capsule,plasmid, flagellum, pili, ribosomes, mesosomes and circular DNA. The engaging PowerPoint and accompanying resources have been designed to cover the specification point 3.4 that is detailed in the Pearson Edexcel A-level Biology A specification but also makes continual references to eukaryotic cells as covered in 3.1 - 3.3 so that comparisons can be made. A clear understanding of terminology is important for A-level Biology so this lesson begins with a challenge, where the students have to come up with a 3-letter prefix that they believe will translate as before or in front of . This leads into the discovery of the meaning of prokaryote as before nucleus which acts to remind students that these types of cell lack this cell structure. Links to the previous lessons on the eukaryotic cells are made throughout the lesson and at this particular point, the students are asked to work out why the DNA would be described as naked and to state where it will be found in the cell. Moving forwards, the students will discover that these cells also lack membrane bound organelles and a quick quiz competition challenges them to identify the specific structure that is absent from just a single word. In addition to the naked DNA, students will learn that there are also ribosomes in the cytoplasm and will discover that these are smaller than those found in the cytoplasm of an eukaryotic cell (but the same size as those in chloroplasts and mitochondria). The remainder of the lesson focuses on the composition of the cell wall, the additional features of prokaryotic cells such as plasmids and there is also the introduction of binary fission as the mechanism by which these organisms reproduce so that students can recognise that prokaryotic cells do not contain centrioles
Topic 17.2: Natural and artificial selection (CIE A-level Biology)
GJHeducationGJHeducation

Topic 17.2: Natural and artificial selection (CIE A-level Biology)

4 Resources
This bundle of detailed lessons covers points (a), (b), © & (d) of topic 17.2 (Natural and artificial selection) of the CIE A-level Biology specification. All of the lesson PowerPoints and accompanying resources contain a wide range of activities including exam-style questions, discussion periods and quick quiz competitions, which will engage and motivate the students whilst covering the detail of each sub-topic. As a result of these lessons, students will understand how random mutations result in variation within species which allows selection pressures to act on the individuals and conveying an advantage to some. The result is an increase in the frequency of some alleles and this change can be calculated using the Hardy-Weinberg principle
Natural selection and adaptation (Edexcel A-level Biology A)
GJHeducationGJHeducation

Natural selection and adaptation (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how natural selection leads to behavioural, anatomical and physiological adaptations. The PowerPoint and accompanying resources have been designed to cover specification points 4.3 & 4.4 of the Pearson Edexcel A-level Biology A specification President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques as this is covered later in topic 4. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links are made to the upcoming topic of taxonomy so that students are prepared for this lesson on species and classification hierarchy. Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
Natural selection (CIE A-level Biology)
GJHeducationGJHeducation

Natural selection (CIE A-level Biology)

(0)
This engaging lesson uses the example of resistant bacteria and the modern-day giraffe to describe how natural selection occurs. The PowerPoint and accompanying resources have been designed to cover point 17.2 (a) of the CIE A-level Biology specification but also explains that genetic diversity is important for selection and therefore covers 17.1 (d) at the same time. President Trump’s error ridden speech about viruses antibiotics is used at the beginning of the lesson to remind students antibiotics are actually a treatment for bacterial infections. Moving forwards, 2 quick quiz competitions will initially introduce MRSA and then will show the students that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin. In doing so, they will see the principles of natural selection so they can be applied to different situations such as describing how the anatomy of the modern-day giraffe has evolved over time. The final part of the lesson introduces adaptations and convergent evolution and also links to the need for modern classification techniques which is covered later in topic 17.
Different types of variation (OCR A-level Biology)
GJHeducationGJHeducation

Different types of variation (OCR A-level Biology)

(0)
This fully-resourced lesson describes the differences between continuous and discontinuous variation and intraspecific and interspecific variation. The engaging PowerPoint and accompanying resources have been designed to cover the first part of point 4.2.2 (f) of the OCR A-level Biology A specification but also acts as a revision tool as a number of activities challenge the students on their knowledge of the genetic code and meiosis from modules 2.1.3 and 2.1.6. The students begin the lesson by having to identify phenotype and species from their respective definitions so that a discussion can be encouraged where they will recognise that phenotypic variation between members of the same species is due to both genetic and environmental factors and that this is known as intraspecific variation. The next part of the the lesson focuses on these genetic factors, and describes how mutation and the events of meiosis contribute to this variation. A range of activities, which include exam-style questions and quick quiz rounds, are used to challenge the students on their knowledge and understanding of substitution mutations and deletions, the degenerate and non-overlapping genetic code, crossing over and independent assortment. Another quick quiz round is used to introduce polygenic inheritance and the link is made between this inheritance of genes at a number of loci as an example of continuous variation. In the following task, the students have to determine whether a statement or example represents discontinuous or continuous variation. The final part of the lesson describes a few examples where environmental factors affect phenotype, such as chlorosis in plants.
Genetic biodiversity (OCR A-level Biology)
GJHeducationGJHeducation

Genetic biodiversity (OCR A-level Biology)

(0)
This fully-resourced lesson describes genetic biodiversity as the number of genes in a population and considers how it can be assessed. The engaging PowerPoint and accompanying differentiated resources have been primarily designed to cover point 4.2.1 (e) of the OCR A-level Biology A specification but also introduces inheritance and codominance so that students are prepared for these genetic topics when they are covered in module 6.1.2 In order to understand that 2 or more alleles can be found at a gene loci, students need to be confident with genetic terminology. Therefore the start of the lesson focuses on key terms including gene, locus, allele, recessive, genotype and phenotype. A number of these will have been met at GCSE, as well as during the earlier lessons in module 2.1.3 when considering meiosis, so a quick quiz competition is used to check on their recall of the meanings of these terms. The CFTR gene is then used as an example to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). Two calculations are provided to the students that can calculate the % of loci with more than one allele and the proportion of polymorphic gene loci. At this point, the students are introduced to codominance and again they are challenged to apply their understanding to a new situation by working out the number of phenotypes in the inheritance of blood groups. The lesson concludes with a brief consideration of the HLA gene loci, which is the most polymorphic loci in the human genome, and students are challenged to consider how this sheer number of alleles can affect the chances of tissue matches in organ transplantation
Triglycerides (WJEC A-level Biology)
GJHeducationGJHeducation

Triglycerides (WJEC A-level Biology)

(0)
This fully-resourced lesson describes the relationship between the structure, properties and functions of triglycerides in living organisms. The engaging PowerPoint and accompanying worksheets have been designed to cover the first part of point (f) as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and links are also made to related future topics such as the importance of the myelin sheath for the conduction of an electrical impulse which is covered in A2. The lesson begins with a focus on the basic structure and roles of lipids, including the elements that are found in this biological molecule and some of the places in living organisms where they are found. Moving forwards, the students are challenged to recall the structure of the carbohydrates from earlier in topic 1 so that the structure of a triglyceride can be introduced. Students will learn that this macromolecule is formed from one glycerol molecule and three fatty acids and have to use their understanding of condensation reactions to draw the final structure. Time is taken to look at the difference in structure and properties of saturated and unsaturated fatty acids and students will be able to identify one from the other when presented with a molecular formula. The final part of the lesson explores how the various properties of a triglyceride mean that it has numerous roles in organisms including that of an energy store and source and as an insulator of heat and electricity.
Structure & role of amino acids (WJEC A-level Biology)
GJHeducationGJHeducation

Structure & role of amino acids (WJEC A-level Biology)

(0)
As the monomers of proteins, amino acids are extremely important and this lesson describes their structure and roles in organisms. The engaging PowerPoint has been designed to cover point (h) as detailed in AS unit 1, topic 1 of the WJEC A-level Biology specification and provides a clear introduction to the following lesson on the protein structures. The lesson begins with a prior knowledge check, where the students have to use the 1st letters of 4 answers to uncover a key term. This 4-letter key term is gene and the lesson begins with this word because it is important for students to understand that these sequences of bases on DNA determine the specific sequence of amino acids in a polypeptide. Moving forwards, students are given discussion time to work out that there are 64 different DNA triplets and will learn that these encode for the 20 amino acids that are common to all organisms. The main task of the lesson is an observational one, where students are given time to study the displayed formula of 4 amino acids. They are not allowed to draw anything during this time but will be challenged with 3 multiple choice questions at the end. This task has been designed to allow the students to visualise how the 20 amino acids share common features in an amine and an acid group. A quick quiz round introduces the R group and time is taken to explain how the structure of this side chain is the only structural difference, before cysteine is considered in greater detail due to the presence of sulfur atoms. Students are briefly introduced to disulfide bridges so they will recognise how particular bonds form between the R groups in the tertiary structure which is covered in the next lesson. One more quiz round called LINK TO THE FUTURE is used to demonstrate the range of roles played by amino acids in the later part of the course such as translation and mineral ions. The final part of the lesson considers challenges the students on their knowledge of hydrolysis reactions as they have to spot the errors in a passage about the breakdown of polypeptides and dipeptides.
Structure of mRNA & tRNA (Edexcel A-level Biology B)
GJHeducationGJHeducation

Structure of mRNA & tRNA (Edexcel A-level Biology B)

(0)
This lesson describes the structure of messenger and transfer RNA and compares this against the structure of DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover points 1.4 (iv) and (v) as detailed in the Edexcel A-level Biology B specification which states that students should be able to describe the structure of the two forms of this nucleic acid. Students were introduced to the detailed structure of a nucleotide and DNA in the first lesson of topic 1.4, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as the understanding of the current topic. The lesson begins with the introduction of RNA as a member of the family of nucleic acids and this enables students to recognise that this polynuclotide shares a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis
DNA replication (Edexcel A-level Biology B)
GJHeducationGJHeducation

DNA replication (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how DNA is replicated semi-conservatively, including the roles of DNA helicase, polymerase and ligase. The detailed PowerPoint and accompanying resources have been designed to cover point 1.4 (ii) of the Edexcel A-level Biology B specification The main focus of this lesson is the roles of DNA helicase in the breaking of the hydrogen bonds between nucleotide bases, DNA polymerase in forming the growing nucleotide strands and DNA ligase in the joining of the nucleic acid fragments. Time is taken to explain key details, such as the assembly of strands in the 5’-to-3’ direction, so that the continuous manner in which the leading strand is synthesised can be compared against that of the lagging strand. The students are constantly challenged to make links to previous topics such as DNA structure and hydrolysis reactions through a range of exam questions and answers are displayed so that any misconceptions are quickly addressed. The main task of the lesson asks the students to use the information provided in the lesson to order the sequence of events in DNA replication before discussing how the presence of a conserved strand and a newly built strand in each new DNA molecule shows that it is semi-conservative.
The importance of water (WJEC A-level Biology)
GJHeducationGJHeducation

The importance of water (WJEC A-level Biology)

(0)
This detailed lesson describes the properties of water to demonstrate the importance of this molecule for living organisms. The engaging PowerPoint and accompanying resource have been designed to cover the details of specification point (b) of AS unit 1, topic 1 of the WJEC A-level Biology course and has been specifically designed to ensure that each role is illustrated using a specific example. As this is only the second lesson in the biological compounds topic, which is a topic that students tend to find difficult or potentially less engaging, the planning has centred around the inclusion of a wide variety of tasks to cover the content whilst maintaining motivation and engagement. These tasks include current understanding and prior knowledge checks, discussion points and quick quiz competitions to introduce key terms and values in a memorable way. The start of the lesson considers the structure of water molecules, focusing on the covalent and hydrogen bonds, and the dipole nature of this molecule. Time is taken to emphasise the importance of these bonds and this property for the numerous roles of water and then over the remainder of the lesson, the following properties are described and discussed and linked to real-life examples: polarity ability to form hydrogen bonds surface tension as a solvent thermal properties as a metabolite The final part of the lesson introduces condensation and hydrolysis reactions and students will learn that a clear understanding of these reactions is critical as they will reappear throughout the topic in the synthesis and breakdown of biological compounds
Fibrous & globular proteins (WJEC A-level Biology)
GJHeducationGJHeducation

Fibrous & globular proteins (WJEC A-level Biology)

(0)
This engaging lesson describes the relationship of the fibrous and globular structure of proteins to their function. The PowerPoint and accompanying resource have been primarily designed to cover specification point (j) as detailed in AS unit 1, topic 1 of the WJEC A-level Biology course but due to the detailed coverage of haemoglobin, the start of this lesson could also be used when teaching lessons that cover specification points in AS unit 2, topic 3 on adaptations for transport By the end of the lesson, students will be able to describe that the interactions of the hydrophobic and hydrophilic R groups results in different shapes which differ in their solubility in water and be able to explain the importance of this property with reference to the individual functions of proteins, specifically collagen and haemoglobin. They will also be able to name key individual details for each protein, such as haemoglobin being a conjugated protein and collagen having repeating units and being wound into a triple helix Extra time has gone into the planning of this lesson to ensure that links are continuously made to previous topics such as amino acids and the levels of protein structure as well as to upcoming topics
Translation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Translation (Edexcel A-level Biology B)

(0)
This detailed lesson describes the process of translation at the ribosome and includes detailed descriptions of the roles of the mRNA, tRNA and rRNA. The PowerPoint and accompanying resources have been designed to cover the second part of point 1.4 (vi) of the Edexcel A-level Biology B specification and this lesson also includes continual links to the previous lessons in this topic on transcription and the structure of DNA and RNA. Translation is a topic which is often poorly understood and so this lesson has been written with the aim of supporting the students to answer the different types of questions that can arise. The lesson begins by challenging the students to consider why it is so important that the amino acids are assembled in the correct order during the formation of the chain. Moving forwards, a quick quiz round called “LOST IN TRANSLATION” is used to check on their prior knowledge of the mRNA strand, the tRNA molecules and the ribosomes. The next task involves a very detailed description of translation that has been divided into 14 statements which the students have to put into the correct order. By giving them a passage of this detail, they can pick out the important parts to use in the next task where they have to answer shorter questions worth between 3 and 4 marks. These types of questions are common in the assessments and by building up their knowledge across the lesson, their confidence to tackle this type of question should increase. The final two tasks of the lesson involve another quiz, where the teams compete to transcribe and translate in the quickest time before using all that they have absorbed to answer some questions which involve the genetic code and the mRNA codon table
The effect of gene mutations on amino acid sequences (Edexcel A-level Biology B)
GJHeducationGJHeducation

The effect of gene mutations on amino acid sequences (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the different effects that gene mutations can have on the amino acid sequence of a protein. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 1.4 (viii) & (ix) as detailed in the Edexcel A-level Biology B specification and includes substitutions, deletions and insertions and considers a real life example in sickle cell anaemia. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered earlier in this topic. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of gene mutation whilst challenging the students to recognise three terms which are associated with the genetic code. The main focus of the lesson is substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. Students will learn that a substitution is responsible for the new allele that causes sickle cell anaemia and they are tested on their understanding through an exam-style question. As with all of the questions, a mark scheme is included in the PowerPoint which can be displayed to allow the students to assess their understanding. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
Primary & secondary responses & antibodies (OCR A-level Biology)
GJHeducationGJHeducation

Primary & secondary responses & antibodies (OCR A-level Biology)

(0)
This lesson describes the differences between the primary and secondary responses and describes how the structure of antibodies is related to function. The PowerPoint and accompanying resources have been designed to cover specification points 4.1.1 (g), (h) and (i) as detailed in the OCR A-level Biology A specification and emphasises the importance of memory cells. As memory B cells differentiate into plasma cells that produce antibodies when a specific antigen is re-encountered, it was decided to link the immune responses and antibodies together in one lesson. The lesson begins by checking on the students incoming knowledge to ensure that they recognise that B cells differentiate into plasma cells and memory cells. This was introduced in a previous lesson on the specific immune response and students must be confident in their understanding if the development of immunity is to be understood. A couple of quick quiz competitions are then used to introduce key terms so that the structure of antibodies in terms of polypeptide chains, variable and constant regions and hinge regions are met. Time is taken to focus on the variable region and to explain how the specificity of this for a particular antigen allows neutralisation and agglutination to take place. The remainder of the lesson focuses on the differences between the primary and secondary immune responses and a series of exam-style questions will enable students to understand that the quicker production of a greater concentration of these antibodies in the secondary response is due to the retention of memory cells.