Hero image

GJHeducation's Shop

Average Rating4.50
(based on 912 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1176k+Views

1987k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Role of plant hormones (OCR A-level bio)
GJHeducationGJHeducation

Role of plant hormones (OCR A-level bio)

(0)
This lesson describes the role of plant hormones in stomatal closure, leaf loss in deciduous plants and seed germination. The extensive and detailed PowerPoint and accompanying resources have been planned to cover the content of point b of module 5.1.5 of the OCR A-level biology A specification. The start of the lesson challenges the students to identify three leaf cells in the list of 11 leaf structures. This introduces guard cells and then the opening between them, the stomatal aperture. Time is taken to go through the process by which the apertures are opened to allow carbon dioxide to diffuse into the leaf for photosynthesis. This provides students with an insight into the movement of potassium ions and water when they are challenged about the closure of these openings in response to water stress. Students will meet abscisic acid and understand how this acts as the first messenger, before calcium ions act as the second messenger to trigger events on the inside of the guard cells. Moving forwards, the role of ethene and auxins in leaf loss and gibberellins in seed germination are described and explained. Multiple opportunities are taken to challenge students on their prior knowledge as well as their current understanding and all answers are embedded into the PowerPoint. This lesson is extensive and it is estimated that it will take 2-3 hours of teaching time to go through all of the tasks and content.
Saltatory conduction (CIE A-level Bio)
GJHeducationGJHeducation

Saltatory conduction (CIE A-level Bio)

(1)
This lesson explains why the conduction of an impulse along myelinated neurones is faster than along unmyelinated neurones. The PowerPoint and accompanying resources have been written to cover point (7) of topic 15.1 of the CIE A-level Biology specification. A wide range of activities are included in this lesson to maintain the motivation of the students whilst ensuring that the detail is covered in depth. Interspersed with the activities are understanding checks and prior knowledge checks to allow the students to not only assess their understanding of the current topic but also challenge themselves to make links to earlier topics such as the movement of ions across membranes and biological molecules. Over the course of the lesson, students consider the structure of the myelin sheath and specifically how the electrical insulation is not complete all the way along. This leaves gaps, known as the nodes of Ranvier, which allow the entry and exit of ions. Saltatory conduction can be poorly explained by a lot of students so time is taken to look at the way that the action potential jumps between the nodes and this is explained further by reference to local currents. The rest of the lesson focuses on the other two factors which are axon diameter and temperature and students are challenged to discover these two by focusing on the vampire squid.
PAPER 1 REVISION (AQA A-level biology)
GJHeducationGJHeducation

PAPER 1 REVISION (AQA A-level biology)

(0)
This lesson will support students with their revision in the build up to the AQA A-level biology PAPER 1 mocks or final assessments. The lesson includes a wide variety of tasks and activities which will engage and motivate students whilst challenging their knowledge and understanding of the content of topics 1 - 4, allowing them to identify any gaps so they can be addressed before the assessments. These tasks include exam-style questions and understanding checks and all answers are embedded into the PowerPoint. Several of these questions challenge their mathematical skills, to prepare them for the volume of marks that will be assigned to this aspect of the course. There are also quick quiz rounds and guided discussion periods to allow students to support each other, and some of the accompanying resources have been differentiated to allow access to the content for all. The following content is directly covered by this revision lesson: The nature of the genetic code Classification hierarchy The structure of proteins Cardiac output The roles of enzymes in DNA replication The events of meiosis which contribute to genetic variation The relationship between structure and function in plant polysaccharides The structure and function of organelles Cell fractionation Calculating the size of an object under an optical microscope Using the image = actual x magnification formula Types of immunity Understanding whether data is significantly different or not The role of macrophages in the immune response The evolution of antibiotic resistance The lesson finishes with a round of BLOCKBUSTERS, where students are challenged to recognise 17 key terms from across topics 1 - 4, which weren’t directly covered by the earlier part of the lesson. If you are happy with the quality of this revision lesson, a lesson challenging content from topics 5 - 8 for PAPER 2 has also been uploaded.
PAPER 2 REVISION (Edexcel SNAB)
GJHeducationGJHeducation

PAPER 2 REVISION (Edexcel SNAB)

(0)
This detailed lesson has been intricately planned to support student revision in the build up to their PAPER 2 mocks or final assessment. The wide range of tasks and activities will challenge students on their knowledge of topics 1 - 4, 7 & 8 of the Pearson Edexcel A-level biology A specification, allowing them to recognise those areas which require further attention before the examinations. Included in the range of tasks are exam-style questions and understanding checks and all answers are embedded into the PowerPoint. There are quiz rounds to maintain engagement and to encourage healthy competition, as well as guided discussion periods to provide opportunities for students to support each other. The following content is directly covered by this revision lesson: Allopatric and sympatric speciation Saltatory conduction The structure of neurones Depolarisation and the initiation of an action potential Hardy-Weinberg principle Genetic terminology Sex linkage and autosomal linkage Aerobic respiration The lower yield of ATP from anaerobic respiration The sliding filament model of muscle contraction The ultrastructure of skeletal muscle Slow and fast twitch muscle fibres The control of heart rate The functions of the different parts of the brain Calculating cardiac output Gene expression as demonstrated by the lac operon The events of atherosclerosis Epigenetics This is an extensive lesson with many tasks so it is estimated that it will take over 3 hours of teaching time if covered in full, but teachers may choose to use sections to focus on a specific topic.