Hero image

Science 4 Breakfast

Average Rating5.00
(based on 4 reviews)

Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.

172Uploads

17k+Views

2k+Downloads

Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
GCSE Physics Motion Bundle: 7-Lesson Unit
Malachite44Malachite44

GCSE Physics Motion Bundle: 7-Lesson Unit

7 Resources
Lesson 1 Speed Lesson 2 Distance-Time Graphs Lesson 3 Acceleration Lesson 4 Velocity-Time Graphs Lesson 5 F = ma Lesson 6 Weight and Terminal Velocity Lesson 7 Stopping Distance
GCSE Physics Forces and Elasticity: Complete Lesson
Malachite44Malachite44

GCSE Physics Forces and Elasticity: Complete Lesson

(0)
Define elastic and non-elastic deformation in materials. Calculate the extension (or compression) of a material using its length and original length. State Hooke’s law and use it to calculate the force required to cause a given extension in a spring using the spring constant. Describe how elastic potential energy is stored when a material is stretched or compressed by a force. Describe force-extension graphs of elastic materials and identify the limit of proportionality. Compare the behaviour of different materials before and after the limit of proportionality.
GCSE Physics Distance-Time Graphs: Complete Lesson
Malachite44Malachite44

GCSE Physics Distance-Time Graphs: Complete Lesson

(0)
Describe the motion of an object by interpreting distance–time graphs. Describe how the gradient of a distance–time graph represents the speed. Calculate the speed of an object by calculating the gradient from a distance–time graph.
GCSE Physics Velocity-Time Graphs: Complete Lesson
Malachite44Malachite44

GCSE Physics Velocity-Time Graphs: Complete Lesson

(0)
Describe the motion of an object by interpreting velocity–time graphs. Describe how the gradient of a velocity–time graph represents the acceleration. Calculate the acceleration of an object by calculating the gradient from a velocity–time graph.
GCSE Chemistry Graphene and Fullerenes: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Graphene and Fullerenes: Complete Lesson

(0)
Dive into the fascinating world of carbon allotropes with this lesson on fullerenes and graphene, last updated on 3rd December 2024. This engaging resource introduces students to two of carbon’s most innovative forms, exploring their unique structures, properties, and applications. Fullerenes are hollow molecular structures made of carbon atoms arranged in hexagonal and pentagonal rings. Their spherical and tubular forms, such as C60 molecules and carbon nanotubes, exhibit remarkable properties like high tensile strength and excellent thermal and electrical conductivity. These characteristics make them valuable for applications in materials science, electronics, and even targeted drug delivery. Graphene, a single-atom-thick layer of carbon atoms arranged in a hexagonal lattice, is the thinnest, strongest, and most conductive material discovered to date. It has groundbreaking potential in flexible electronics, advanced computing, and energy storage. This lesson includes: Thought-provoking starter questions to activate prior knowledge on carbon bonding and allotropes. Hands-on activities like creating a graphene sample using sticky tape. Detailed notes on the discovery, structure, and uses of fullerenes and graphene. Exam-style questions to solidify understanding of their electrical conductivity, mechanical properties, and real-world applications. How to use: Begin with the starter activity to encourage discussion about carbon’s versatility. Transition to hands-on experiments and guided note-taking, concluding with review questions to assess comprehension. This resource provides an exciting way for students to explore cutting-edge materials that are shaping the future of science and technology.
GCSE Physics Introduction to Electrical Circuits: Complete Lesson
Malachite44Malachite44

GCSE Physics Introduction to Electrical Circuits: Complete Lesson

(0)
This lesson provides a comprehensive introduction to the fundamentals of electrical circuits. It is designed to help learners build essential skills and knowledge in circuit theory through engaging explanations and practical exercises. Key features of the lesson include: Circuit Components and Symbols: Learn to identify common circuit components and match them to their symbols and functions. Drawing Circuit Diagrams: Practice constructing and interpreting simple circuit diagrams, including series and parallel configurations. Types of Circuits: Explore the differences between series and parallel circuits, focusing on energy flow and practical applications like Christmas tree lights. Current and Voltage: Understand the flow of charge (current) and energy transfer (potential difference), including how to measure them with ammeters and voltmeters. Hands-On Practice: Match symbols to components. Draw circuits with specified requirements. Analyze the effects of circuit changes on functionality. Discussion Questions: Apply concepts to answer key questions about circuit behavior, including the advantages of different setups. This lesson equips students with the foundational tools to explore more advanced electrical concepts while grounding their learning in practical applications and real-world relevance.
KS3 Physics Light: Complete Lesson
Malachite44Malachite44

KS3 Physics Light: Complete Lesson

(0)
PowerPoint that covers the key words: transparent, translucent, opaque, absorbed, transmitted, luminous, non-luminous, light meter and reflected. This is made for a KS3 level class. The PowerPoint includes the answers to the activities.
KS3 Physics Reflection: Complete Lesson
Malachite44Malachite44

KS3 Physics Reflection: Complete Lesson

(0)
PowerPoint that covers law of reflection, virtual images, specular reflection and diffuse reflection. This is made for a KS3 level class. Includes diagrams, class practical (or demonstration/video), questions, answers and assessment for learning opportunities.
KS3 Physics Investigating Refraction: Complete Lesson
Malachite44Malachite44

KS3 Physics Investigating Refraction: Complete Lesson

(0)
PowerPoint that covers the following learning objective: Investigate how refraction happens using a glass block. This is made for a KS3 level science class. Includes questions, answers, diagrams, a practical opportunity and videos/simulations if you don’t have the practical equipment.
GCSE Biology Inherited Disorders and Punnett Squares: Complete Lesson
Malachite44Malachite44

GCSE Biology Inherited Disorders and Punnett Squares: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Describe what is meant by an inherited disorder and recognise examples. Use a genetic cross to explain how inherited disorders are passed on and predict the probability of a child inheriting a genetic disorder. Use a Punnett square diagram to predict the outcome of a genetic cross using the theory of probability. This is made for a GCSE biology class. Includes questions and answers.
GCSE Biology Health and Disease: Complete Lesson
Malachite44Malachite44

GCSE Biology Health and Disease: Complete Lesson

(0)
PowerPoint that covers health and disease. Includes questions, answers and a mind-map to complete. The following learning objectives are covered: Describe health as a state of physical and mental wellbeing. State some causes of ill health. Describe how diseases can interact. This is made for a GCSE KS4 science class.
GCSE Physics Resultant Forces: Complete Lesson
Malachite44Malachite44

GCSE Physics Resultant Forces: Complete Lesson

(0)
Describe the difference between balanced and unbalanced forces and give examples for both. Identify and calculate resultant forces. Describe situations that are in equilibrium. Explain why the speed or direction of motion of objects can change.