All my resources have been created to use with classes I teach. Often I've created resources because, for a particular topic, I haven't been happy with the number/standard of the examples in a textbook. Sometimes I've created worksheets for certain topics (e.g. graph transformations) because I feel my classes will make greater progress on a printed worksheet than trying to work from a textbook. I always aim to produce high-quality resources that improve the students' learning and understanding.
All my resources have been created to use with classes I teach. Often I've created resources because, for a particular topic, I haven't been happy with the number/standard of the examples in a textbook. Sometimes I've created worksheets for certain topics (e.g. graph transformations) because I feel my classes will make greater progress on a printed worksheet than trying to work from a textbook. I always aim to produce high-quality resources that improve the students' learning and understanding.
This 21-page resource covers all the required knowledge for conditional probability in the A2 part of the new A level. In every section it contains examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included).
The sections are:
Venn diagrams and set notation (revision of AS level work)
Conditional probability using Venn diagrams
Conditional probability using two-way tables
Conditional probability using tree diagrams
This projectable and printable resource will save you having to draw any tables/diagrams when teaching the topic and will make things easier for your students as they can just work directly on the provided tables and diagrams.
The 2 page assessment covers all aspects of the topic and fully worked solutions are provided.
Here is an example of one of my A level resources that is freely available:
https://www.tes.com/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
This resource was designed to help students learn how graphs with logarithmic scales are connected to models of the form y=ab^x and y=ax^n.
The first section focuses on models of the form y=ab^x. There are examples to work through as a class, with axes provided, to establish that if y=ab^x then there is a linear relationship between log(y) and x. There is then a page of examples to practice changing from y=ab^x into the linear equation, and vice versa. The examples conclude with 2 questions where students are given experimental data and required to use a graph to estimate the values of a and b in the model y=ab^x - which is typical of an examination-style question.
There is then an exercise with 11 questions for students to complete on their own (again, all axes are provided).
The second section focuses on models of the form y=ax^n. There are examples to work through as a class, with axes provided, to establish that if y=ax^n then there is a linear relationship between log(y) and log(x). There is then a page of examples to practice changing from y=ax^n into the linear equation, and vice versa. The examples conclude with 2 questions where students are given experimental data and required to use a graph to estimate the values of a and n in the model y=ax^n - which is typical of an examination-style question.
There is then an exercise with 11 questions for students to complete on their own (again, all axes are provided).
Answers to all questions in the exercises are included.
Here is an example of one of my A level resources that is freely available:
https://www.tes.com/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
The presentation introduces the idea of drawing a graph to represent how quickly a container fills with liquid over time. The print-version can be given to pupils to make notes on and complete as the presentation is shown.
The worksheet is designed to test their understanding after completing the presentation (answers are included).
These worksheets can be used to introduce and practise the new GCSE topic of equation of a circle (centred at origin) and the equation of a tangent to a circle.
The first worksheet starts with an activity that helps the students to realise that x^2 + y^2 = k is the equation of a circle and is followed by some questions to practise using it.
The second document is an 8-page worksheet which can be used to revise all the necessary skills/knowledge required before studying the equation of a tangent to a circle. Working through this first seemed to really help my GCSE group with this topic. Answers are included.
The third document is a 9-page worksheet which focusses on finding the equation of a tangent to a given circle at a particular point or with a particular gradient. All answers are included.
The powerpoint presentation can be used to introduce this topic, containing examples and explanations.
The notes and examples sheet can just be handed out as a reminder during the tasks, or later as a revision resource.
The first activity just requires the students to indicate on a grid whether each item is an equation, expression, identity or formula.
The second activity involves cutting out each item and putting/sticking it into the correct column on the answer table.
All answers are included.
After a few years of teaching sorting algorithms by creating and working through examples on the board I got sick of it and created these resources. They make it easy to introduce, work through some examples and then there is another worksheet full of examples for students to attempt where the fully-worked solutions are already done, making it easy to check. The printable worksheets mean that students don't need to copy down lists of numbers or create tables to work on - this means they can spend the time just practising using the algorithm.
There is also the excel spreadsheet I created to generate examples - this can used to make as many more examples as you want (instructions are on the spreadsheet).
These 2 resources cover all the required knowledge and techniques for the topic of constant acceleration, as required for AS part of the new A level. In each section it contains notes, explanations and examples to work through with your class followed by an exercise of questions for students to attempt themselves (answers included).
The first resource is a 32-page booklet which covers the following:
1.Deriving the constant acceleration formulae
2.Using the constant acceleration formulae
3.Vertical motion - objects falling
4.Vertical motion - objects projected upwards
5.Multi-stage problems
The second resource is an 15-question assessment that can be used as a homework or test. Fully worked solutions to this assessment are provided.
This projectable and printable resource will save you having to create or write out any notes/examples when teaching the topic, and will make things easier for your students as they can just work directly on the given spaces provided for solutions. The comprehensive set of exercises contains over 100 questions for your students to complete. Answers to all exercises are included.
Here is an example of one of my A level resources that is freely available:
https://www.tes.com/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
This simple worksheet is a good way to introduce/review angles in parallel lines.
It begins with diagrams of corresponding, alternate and allied (supplementary) angles, then there are some examples to work through with your class.
On the second page there is a short exercise with similar problems for the class to do themselves.
Answers to the exercise are included.
This simple worksheet can be used to introduce/practise using number lines to represent inequalities.
The worksheet starts with a reminder about the different inequality symbols and what they mean. There are then a few examples (to do with your students) of representing inequalities on number lines and writing down the inequalities represented by given diagrams. There is a short exercise with 16 of each type of question - answers are included.
This short worksheet can be used to deliver the topic of proof by contradiction in the new A level specification for all exam boards. A useful resource to help deliver this new topic - fully worked solutions are included for all examples and questions in the exercise.
It begins with 5 examples to work through with your class (the full proofs are given in the teacher’s version). The examples are carefully chosen so that, for the final example, students have seen the results/techniques they need to prove that the square root of 5 is irrational.
Students are expected to be familiar with a proof of the infinity of primes, so on the next page this proof is given in full, together with some numerical examples that should help students understand part of its argument.
There is then an exercise with 9 questions for students to attempt themselves (full proofs provided).
A homework/test is also included (7 questions), with fully-worked solutions provided.
Here is an example of one of my A level resources that is freely available:
https://www.tes.com/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186
This is a tricky little topic so this worksheet may be useful extra practice for your class. Six questions, some with diagrams as an aid. Answers included.
I've always thought that graph transformations is a difficult topic to teach well from a textbook, that's the reason I created these worksheets so my classes could practise sketching the transformations without having to draw axes or try to copy the original curve.
This worksheet has examples and an exercise which focuses on reflections but some questions also involve translations.
The examples are designed to work through as a class and then the rules for the different reflections can be completed.
There are 7 pages of questions for students to complete, including sketching the transformed graph and stating the equation of a transformed graph.
All answers are included - I usually project these so that the whole class can check their answers.
These resources are designed for the new GCSE higher tier.
The first worksheet introduces how Venn diagrams work and the notation used for the different sections of the diagram.
The second worksheet is to practise using the notation correctly.
The powerpoint can be used as a whole class activity to see if they have learned the notation correctly - it contains 11 multiple choice questions, for each they must choose which option is the correct notation for the given Venn diagram.
The final 10-page worksheet is a set of exam-style questions.
All answers are included.
The first two resources are 2 different worksheets that can be used to get your class to learn the different types of graph they are expected to be familiar with at GCSE (linear, quadratic, cubic, reciprocal, exponential and square root) and to be able to recognise or sketch them.
The first resource gets them to calculate points, plot them and join them up, while the second resource was designed to use Geogebra, but would suit any graphing software. In my experience students need a fair bit of time to complete these so this activity may well fill your entire lesson.
The third resource is a worksheet to check their knowledge after completing one of the earlier activities (solutions included).
Three resources to practice finding the equation of quadratic graphs from different types of information. This is a tricky topic and is likely to stretch an able GCSE group.
The first resource is intended to be used as examples to work through as a group, the other resources are for additional practice.
All solutions are provided. Note that simultaneous equations and solving quadratics by factorising is required prior knowledge.
The first 3 resources help students to learn to label the sides of the triangle correctly (adjacent, opposite and hypotenuse).
There are then 2 worksheets, each with 18 questions to practise finding angles or sides using trigonometry. Answers are included.
The short worksheet on angle of elevation/depression explains what the angles represent and has 4 examples for students to complete - answers are included.
The multiple choice questions (including some non-calculator) can be used as an assessment after covering this topic. Answers are also included.
I found it time-consuming tryingto teach my classes how to resolve forces by drawing diagrams on the board and asking them to copy them down - it seemed to take ages and they didn't get to work through that many examples themselves. So I created this worksheet with ready-made diagrams with all the forces and a blank copy of diagram for students to add on the resolved forces. I no longer dread teaching this skill and my classes get a lot more done in the lesson time.
The worksheet starts with an introductory explanation and a worked example. There are then over 20 questions for students to attempt. Fully worked solutions are included.
This worksheet makes it easy to introduce and teach the trapezium rule to your classes. The first page has diagrams to illustrate the method and the derivation of the formula is broken down into steps for you to work through with your class. Projecting all this is so much easier than drawing it out by hand.
The trapezium rule formula is then stated at the top of page 2, followed by 3 pages of examples of examination-style questions that test the use of the formula and your students’ understanding (is the answer from the trapezium rule an underestimate or overestimate, can they use their answer to deduce an estimate for a related integral, etc).
Answers to all the examples are provided.
Here is an example of one of my A level resources that is freely available:
https://www.tes.com/teaching-resource/differentiation-and-integration-with-exponential-and-trigonometric-functions-new-a-level-11981186