Hero image

SWiftScience's Shop

Average Rating4.24
(based on 769 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

839k+Views

476k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW (2016) AQA AS Biology – Cell Specialisation & Organisation
SWiftScienceSWiftScience

NEW (2016) AQA AS Biology – Cell Specialisation & Organisation

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on cell specialisation and organisation begins with a discussion to review specialised cell examples. Students should also describe the difference between smooth and rough endoplasmic reticulum, as well as the role of chloroplasts. To review organelles, students are then given a matching worksheet with descriptions of nine organelles. They can check the names of each with the answers on the slide. This task leads them to a series of organelle images to label and check as well. Students are then tasked with past-paper questions to check their understanding of cell structure. A mark scheme is on the next slide. To begin the discussion of cell specialisation students are tased with a worksheet to try with a partner. The worksheet asks students to consider what information each organelle can tell us. Suggested answers are on the following slides. The lesson should then spark some conversation about the organisation of certain cells, before students work through a few slides of questions about cell organisation in general. After learning the levels of cell organisation students are led through a few examples to decide for themselves which level each example fits in. To synthesise their learning, students will work through a ‘cut & stick’ task to create a table of each cell type and its characteristics. A completed table is on the following slide so students may self-asses. The plenary for this lesson is to write three sentences in their book summarising what they’ve learned! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Cancer
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Cancer

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! To begin this lesson on cancer, students will review their knowledge of cell processes. They should be able to describe mitosis, the prophase, and cytokinesis in detail. For a quick recap on mitosis students will watch a short video, then use their mini whiteboards to name cell cycles and their roles based the images on the following slides! Students will then learn to calculate miotic index (MI). The following slide features an exam-style chart for them to practice calculating MI values. They will then learn to calculate the time a cell spends in each stage and complete example calculations by showing all of their working on their mini whiteboards. Answers for self-assessment are on the following slide. Using their knowledge on MI and cell stage time students will begin to think about cancer. They should make note of the definitions of key words before moving on. Students will then watch a short video on the cancer genome project and answer four questions in their books while watching. Answers are provided for self-assessment. The cell cycle is controlled at three checkpoints, at which the cell can continue or stop production. Students should make clear note in their books before moving on to discuss how these checkpoints are relevant to cancer. The following slides define proto-oncogenes, oncogenes, and mutated tumour suppressor genes, so students should be able to explain how mutations cause cancer. Students are then taught how cancer treatment works in the cell cycle. The following slide considers the cellular side-effects of treating cancer. To consolidate students will practise an exam-style fill in the blank task. Answers are on the following slide for self-assessment. The plenary task is for students to draft a WhatsApp message to a friend explaining what they have learned about cancer in this lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AS-Level Biology - Proteins
SWiftScienceSWiftScience

NEW (2016) AS-Level Biology - Proteins

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with an introduction to proteins, the importance of such molecules in the human body as well as the general structural formula of an amino acid. Students are then shown the structural formula of two amino acids - glycine and alanine - and are asked to used their mini whiteboards to show how a condensation reaction could occur between the two molecules to form a peptide bond. There work can then be checked against the answer provided on the PowerPoint. Over the course of the next few slides, you can run through the main principles of the formation of a protein from the primary -> secondary -> tertiary -> quaternary structure. As students listen to the main principles, they can write these down onto their ‘Protein Summary Sheet’ - provided. Students will then be given a worksheet which shows an image/description of a protein as one of the four levels of protein formation, students have to identify which level it is at (primary, secondary, tertiary, quaternary). Once complete, students can self-assess their work using the answers provided on the PowerPoint. Students will now be introduced to the Biuret test for proteins, which they will need to be able to recite as well as give details of a positve/negative result. The last activity is a past-paper question to test students knowledge of what has been learned this lesson, which can be self-assessed using the mark scheme provided. The plenary requires students to write a twitter message to outline what they have learned this lesson, including #keywords. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS Biology – Exchange Between Organisms and their Environment
SWiftScienceSWiftScience

NEW (2016) AQA AS Biology – Exchange Between Organisms and their Environment

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson in exchange systems begins by asking students to think of example of exchange systems and the substances which would need to be exchanged. The next slide demonstrates the differences in exchange process for single and multicellular organisms. Notes are available under the slide for discussion. Using the pictures on the slides, students will then identify some examples of substances that need to be interchanged between a living organism and its environment. Those images are then ordered specifically on the next slide to demonstrate SA and body size. If multicellular organisms relied on diffusion, they would die, so they have evolved in other ways! Students should identify these evolved features in their next task. They will fill a table out to explain how each feature functions to help organisms exchange the substances they need. They should be able to identify why multicellular organisms need specialised exchange surfaces or systems. The next slides explain Fick’s Law and define important terms before asking students to calculate the surface area of cells. Answers for self-assessment are on the following slide. Students will then complete lab task CP8 to engage with the effect of SA:V ratio on the rate of diffusion. Materials and method are explained on the slides. Exam-style summary questions are included to consolidate the lab task with lecture notes, and answers for self-assessment are on the following slide. As a plenary, students will spend 60 seconds speaking with the person next to them about what they learned from the lesson over all. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS Biology – Gas Exchange in Single-Celled Organisms and Insects
SWiftScienceSWiftScience

NEW (2016) AQA AS Biology – Gas Exchange in Single-Celled Organisms and Insects

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Organisms & their Environment’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins by reminding students of the four general things that need to be exchanged between an organism and their environment and the three factors which may affect the rate of diffusion. This discussion leads into the first few slides which explain how an organism like an amoeba gets the substances it needs. A worksheet is included for this lesson for students to complete as they take notes throughout. An amoeba is used as an example of a unicellular organism, which is then compared to insects. The following slides explain the basic form and function of insects, then the process by which they exchange water and O2. Students should take thorough notes on the spiracle, trachea and tracheoles in their books. The slides in this lesson are lecture based and very detailed, students will want to be sure they have a good understanding of the three ways that respiratory gasses move in and out of the tracheal system. The slides explain that gasses move along a diffusion gradient, through mass transport, and as the tracheoles fill with water. A quick check of exam-style questions and mark scheme follows to help students assess their learning. The plenary task is a true or false activity! All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Microscope Measurements
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Microscope Measurements

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a little challenge for students to calculate the actual size of a specimen and complete three measurement conversions. The first outcome is for students to begin to understand graticules and their use. The following slides define eyepiece graticules and explain how to calibrate the eyepiece properly. Students will also watch a short video before working though example (b). Students will then practice calculating magnification to understand the relationship between the eyepiece graticule scale and the stage micrometer scale. To practise their learning students will complete the Calibrating an Eyepiece Graticule worksheet. The next task is to practise calibrating the eyepiece and measure three onion cells. Students will also be asked to complete a biological drawing of their onion cells, and examples of poor and quality drawings are provided in the slides with more detailed expectations. Students will then consolidate their learning by completing an exam-style question, answers are provided on the following slide for self-assessment. The plenary task is a quick exit card, students should write thee things they’ve learnt, five key words, and on question for their peers about this lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) - Enzymes
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) - Enzymes

(2)
This lesson is designed to meet specification points for the NEW AQA Trilogy ‘organisation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by pupils being introduced to what an enzyme is, what it looks like and it’s role in the body. Pupils will then watch a video and will need to answer questions (provided) whilst watching the video, they can self-assess their work using the answers provided. Next pupils are shown a diagram of an enzyme’s lock & key mechanism in action, they will need to draw their own diagram of this process and include labels to show what is happening. Next, pupils are introduced to the factors that can affect the rate of enzyme action. They are given a set of data on how temperature affects the rate of reaction. Pupils will need to plot this data onto a graph, they are then given a set of labels which they will need to match to certain points on their graph to describe what is happening. In the next task pupils will need to complete sentences to explain the data that the graph is displaying, pupils can self-assess their work using the answers provided. The very last task requires pupils to look at the effect of pH on the rate of enzyme action, pupils will need to think about the pH needed for enzymes in the stomach to work. They can discuss this question or come up with an answer themselves. The plenary task is a fill-in-the-blank task for pupils to complete in their books, this can be self-assessed using the answers provided. Any questions please let me know by leaving a comment, and any feedback is much appreciated :)!
NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Monoclonal Antibodies

(1)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on Monoclonal Antibodies and their uses begins with a review of antibodies, plasma b-cells and memory b-cells. Students should also describe the humoral immune response to a pathogen. Students are then introduced to monoclonal antibodies through description on the slides and a short video. They should take notes and be prepared to fill in a diagram using the statements on the slide. A complete diagram is on the following slide for self-assessment. The next slides introduce the use of monoclonal antibodies, and then explain how they may be used to target cancer cells, test for pregnancy, and create medical diagnoses. Students will then watch another video which explains pregnancy tests. They will answer a few questions while watching and may self-assess to the answers on the next slide. Another included task asks students to complete a table explaining how monoclonal antibodies are used in various methods, by using information cards posted throughout the room. Using this information students will think > pair > share to discuss ethical issues regarding the production of monoclonal antibodies. They will watch three short vidoes to inform their discussion and should include risks, benefits, and impacts on both the individual and society in their answers. Some sample discussion points are available in the notes below the slide. To consolidate, students will be given a mixture of information cards to sort into a table of advantages and disadvantages of monoclonal antibodies. The plenary task is to create a three-question quiz to test their peers on today’s lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
OCR GCSE (9-1) Biology - The menstrual cycle
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - The menstrual cycle

(0)
This resources is designed for the OCR Biology GCSE, particularly the ‘B3 - Organism-Level Systems’ scheme of work. This lesson starts by pupils watching a video about the organs and hormones involved in the menstrual cycle, during which time they will need to answer questions on their worksheet. This work can then be red-pen assessed once they have finished. Pupils are then shown a set of diagrams which goes through the steps involved in the menstrual cycle, using the diagrams pupils are asked to discuss in pairs what they think is happening. After a short class discussion pupils will be given the series of diagrams and a set of jumbled statements, they will need to match the statements to the correct diagram to accurately describe what is happening in the menstrual cycle. For higher ability pupils you may want to just give them a set of key words for them to write their own statements below the diagrams. To summarise the role of each of the hormones in the menstrual cycle the next activity is a table and a set of key words, pupils need to fill in the blanks using the key words to correctly describe the role of each hormone. This can be assessed using the answers provided in the PowerPoint presentation. The next activity is a true or false activity on what pupils have learnt about this lesson, the plenary activity is a past-paper question on the hormone levels during pregnancy. The mark scheme for both these activities is provided for pupils to red-pen their work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Vaccination
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Vaccination

(3)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson begins with a review discussion of antibodies. Students should describe the structure and function of antibodies in addition to the roles of plasma and memory cells. Students are then introduced to the function of vaccines a simulation of immune response through a descriptive graph. They should take notes of the following slides which define immunity, both passive and active. The two forms of immunity are also described as a flowchart, students will use this chart to help them complete the first task of the lesson! Answers are available on the following slide for self-assessment. The second task is to copy and complete a table to summarise active and passive immunity. The next slides introduce the three main types of vaccines, students should take good notes before answering an exam style question. Answers are available on the following slide for self-assessment. Students will then think>pair>share to discuss the features of a successful vaccination program. They should consider side effects, administration, production, and herd immunity. Herd immunity is then defined and used to explain historical examples of population-wide vaccinations. Students will use these slides to inform the next task, in which they’ll be asked to consider why a vaccine may fail to eliminate a disease. They will be given a short reason and asked to describe why this reason impacts immunity. Answers for self-assessment are available on the following slide. The plenary task for this lesson is to create a keywords list from the lesson overall. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Bacterial, Viral, Fungal & Protist Diseases Homework
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Bacterial, Viral, Fungal & Protist Diseases Homework

(3)
This task is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Infection & Response’ SoW. For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Ecosystem Processes
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Ecosystem Processes

(0)
This homework activity is designed for the KS3 Science Course, specifically Year 8 B2.1 Module on ‘Ecosystem Processes’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This activity contains a set of differentiated questions, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension/revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know @swift_science_education or swift.education.uk@gmail.com, any feedback would be appreciated :)
NEW AQA A-Level Biology 'Monoclonal Antibodies' - Dominoes Revision Activity
SWiftScienceSWiftScience

NEW AQA A-Level Biology 'Monoclonal Antibodies' - Dominoes Revision Activity

(0)
This task is designed for the NEW AQA A-Level Biology, particularly the ‘Cells’ unit. For more resources designed to meet specification points for the NEW AQA A-Level specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity is a revision activity for the ‘Cells’ unit, students can either have a card each and the task can be completed as a card loop activity with the whole class. Alternatively, students could work in pairs and be given a set of the shuffled cards, they will then need to arrange the cards into the correct sequence so that the sentences make sense (like dominoes tiles). When students carry out this version of the activity, I often have a prize for the students who complete the task in the fastest time! The solution for this activity is included so you can check their answers. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA A-Level Biology 'Enzyme Action' - Dominoes Revision Activity
SWiftScienceSWiftScience

NEW AQA A-Level Biology 'Enzyme Action' - Dominoes Revision Activity

(0)
This task is designed for the NEW AQA A-Level Biology, particularly the ‘Biological Molecules’ unit. For more resources designed to meet specification points for the NEW AQA A-Level specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity is a revision activity for the ‘Enzyme Action’ lesson, students can either have a card each and the task can be completed as a card loop activity with the whole class. Alternatively, students could work in pairs and be given a set of the shuffled cards, they will then need to arrange the cards into the correct sequence so that the sentences make sense (like dominoes tiles). When students carry out this version of the activity, I often have a prize for the students who complete the task in the fastest time! The solution for this activity is included so you can check their answers. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
**BIG BUNDLE** KS3 ~ Year 8 ~ All Biology, Chemistry, Physics lessons
SWiftScienceSWiftScience

**BIG BUNDLE** KS3 ~ Year 8 ~ All Biology, Chemistry, Physics lessons

3 Resources
This bundle contains 68 whole lessons, along with all additional resources, which meet all learning outcomes within the complete Year 8 course, units include: Biology: B2.1 Health & lifestyle B2.2 Adaptation & Inheritance B2.3 Ecosystem Processes Chemistry C2.1 The Periodic Table C2.2 Metals & Acids C2.3 Separation Techniques C2.4 The Earth Physics P2.1 Electricity & Magnetism P2.2 Energy P2.3 Motion & Pressure The resources were designed with the Year 8 Activate course in mind, it contains over 24 weeks worth of lesson content!! You can find more lesson bundles aimed for the KS3 and KS4 science curriculum at: https://www.tes.com/teaching-resources/shop/SWiftScience All lessons contain a mix of differentiated activities, videos & animations, progress checks and more than two opportunities, per lesson, for self/peer red-pen assessment of tasks!
OCR GCSE (9-1) Biology - Transcription & Translation
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Transcription & Translation

(1)
This is a lesson which meets specification points within the OCR Gateway Science - B1 -Cell-Level Systems SoW. This lesson starts with a description, and diagram, of how DNA is copied via the process of transcription. Students will watch a short animation on the PowerPoint which further outlines this process, they will then need to complete a fill-in-the-blank task. This can be self-assessed using the mark scheme provided. Next, children will look at the structure of DNA and mRNA and compare the two, they will complete a table which outlines the similarities and differences between these two molecules. This can be self-assessed using the answers provided. The latter part of the lesson is on translation, children will be given a description and shown a short animation of the process of translation. After this, a video will be shown and students will need to answer a set of questions whilst watching. The answers to this task are included in the PowerPoint, and children will need to self-assess their work once it is complete. The final activity is an exam-style question on DNA. All resources are included, please review with any feedback :)
Home Learning Pack ~ KS3 ~ Year 7 ~ Cells
SWiftScienceSWiftScience

Home Learning Pack ~ KS3 ~ Year 7 ~ Cells

(0)
This is a homeschool pack designed for the KS3 Year 7 Science course, specifically the B1.1 Cells unit of work. For more lessons & homeschool packs designed for KS3 and KS4, please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This comprehensive pack contains five pages of information, to meet learning objectives within the Year 7 ‘Cells’ unit of work. This is followed by three pages of questions, differentiated to suit a range of abilities, as well as a detailed mark scheme for students/parents to mark and correct answers. The pack covers the following topics: Animal & plant cells Observing cells using a microscope Specialised cells Diffusion - Movement of substances Unicellular organisms Thanks for looking :), if you have any questions please email me at swift.education.uk@gmail.com.
OCR GCSE (9-1) Biology - DNA
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - DNA

(0)
This is a lesson which meets specification points within the OCR Gateway Science - B1 -Cell-Level Systems SoW. The lesson begins with a recap on the genetic structures found within an organism, students will need to order the organisms in terms of size. Students can then self-assess their work, using the answers provided. Next, students are taught about the structure of DNA, using detailed diagrams. Children will have a few minutes to study the structure of a DNA nucleotide, it will then be covered up and they will need to try and recreate the diagram, including key words. This task can then be self-assessed. Students will now be shown a video, which outlines the way in which nucleotides are bound together by complimentary base-pairing. Whilst watching the video, students will need to answer a set of questions. The answers to this video are on the next slide, so students can either self-assess or peer-assess their work. The last task is a ‘quick check’ activity, which includes some summary questions on the topic of this lesson. All resources are included, please review with any feedback :)
OCR GCSE (9-1) Biology - Enzyme & Enzyme Reactions
SWiftScienceSWiftScience

OCR GCSE (9-1) Biology - Enzyme & Enzyme Reactions

(0)
This lesson is designed to meet specification points for the NEW OCR GCSE (Gateway) Biology 'Cell-level systems’ SoW. For more lessons designed to meet specification points for the NEW Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by pupils being introduced to what an enzyme is, what it looks like and it’s role in the body. Pupils will then watch a video and will need to answer questions (provided) whilst watching the video, they can self-assess their work using the answers provided. Next pupils are shown a diagram of an enzyme’s lock & key mechanism in action, they will need to draw their own diagram of this process and include labels to show what is happening. Next, pupils are introduced to the factors that can affect the rate of enzyme action. They are given a set of data on how temperature affects the rate of reaction. Pupils will need to plot this data onto a graph, they are then given a set of labels which they will need to match to certain points on their graph to describe what is happening. In the next task pupils will need to complete sentences to explain the data that the graph is displaying, pupils can self-assess their work using the answers provided. The very last task requires pupils to look at the effect of pH on the rate of enzyme action, pupils will need to think about the pH needed for enzymes in the stomach to work. They can discuss this question or come up with an answer themselves. The plenary task is a fill-in-the-blank task for pupils to complete in their books, this can be self-assessed using the answers provided. Any questions please let me know by leaving a comment, and any feedback is much appreciated :)!