Hero image

SWiftScience's Shop

Average Rating4.24
(based on 769 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

843k+Views

478k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE Trilogy (2016) Biology - Evolution & speciation HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Evolution & speciation HT

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, for the higher tier, biology only specification. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson with a think > share > pair task on the definition of a species, pupils ca try and come up with their own definitions before you reveal the true answer. The next part of the lesson focuses on Alfred Russel Wallace and his work on the theory of speciation. Pupils will need to watch the video on Wallace and using the video come up with a timeline or notes on the life events and work produced by Wallace in his lifetime. Once this task is complete pupils can compare what they have written against success criteria provided, pupils can mark, correct and add any important notes using the criteria. The next part of the lesson focuses on the process of speciation, firstly pupils will need to watch a video about organisms which are separated and the develop certain characteristics depending on the environment they are living in. The second video provides a more detailed description of how speciation occurs, pupils will need to answer questions whilst watching this video. Pupils can mark their work using the mark scheme provided once they have completed this task. The next task is a card/statement sort, pupils will need to place the statements provided (can cut out as a card sort) into the correct order to describe the process of speciation, once pupils have completed this task they can mark their work. The final activity is an exam-style question on speciation, pupils will need to complete the exam question in their books (at the back without notes as an extra challenge). Once pupils have completed the exam question they can self or peer assess their work using the mark scheme provided. The plenary task is for pupils to write a twitter message by Alfred Wallace about his work on the theory of speciation. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Rates of decomposition
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Rates of decomposition

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils are firstly given some information, in pairs, on how temperature can affect the rate of decay. They are asked to read through the information and complete a set of questions. Once this task is complete pupils can self-assess their work using the answers provided. The next task is for pupils to think > pair > share ideas about how you could stop or delay the decay process with food. Some images are provided on the PowerPoint slide as a prompt to help students, they can also use the information from the first task to help them come up with ideas. Once pupils have been given time to write their ideas down you can discuss as a group and then reveal the 5 main ways in which foods can be preserved. Pupils will then be given a set of information about each of these preservation methods, they need to use this information plus the information from the first task they completed to explain how each of the methods helps to prevent or delay the decay process. Pupils can then self or peer assess their work once complete. For the next task pupils are asked to use information posters places around the room or on their tables to answer a set of questions about decay & recycling. Once pupils have completed these questions they will need to assess their work using the answers provided. The very last task is an exam question that pupils can either complete in silence at the back of their books - higher ability - or perhaps use the work they have completed this lesson if they are lower ability. The plenary task is for students to write three sentences to summarise what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Reflex Actions

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise. Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse. The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided. The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete. The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - The eye HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - The eye HT

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap on the difference between a stimulus and a receptor and asks students to think>pair>share what the function of photoreceptors might be and where they are found. Pupils are then shown a diagram of an eye, pupils are asked to consider (from a list of structures provided) which labels might go where, they can discuss in pairs and annotate their own diagram if they know for sure. Pupils can then assess their own work when the answers are revealed on the next slide. Pupils must now learn the functions of each of these structures, they will each be given a slip of information about the function of one part of the eye and they should walk around the room and share their information to complete the table in their books. This task can be self-assessed using the answers provided. The next part of the lesson focuses on the pupil reflex, firstly a practical is undertaken whereby pupils block out light from the room and then observe what happens to their partners pupils when they bring a torch to the side of their partners eye. This leads into a description of the pupils reflex, including the role of the circular and radial muscles. Pupils will need to summarise this information by copying and completing the sentences into their book, which can be self-assessed once completed. The last activity is looking at how light is focused on the retina by the lens, pupils are shown a diagram of how this works. After being given a verbal description they are asked to firstly copy the diagram complete with labels and explain how light is focused on the retina using a list of key words that are provided. The plenary task is an exam question on what the students have learnt this lesson, pupils should complete this in silence in their books and then red-pen their work using the mark scheme provided once they have finished. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Metabolism and the liver
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Metabolism and the liver

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Organisation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins by identifying what metabolic rate is and then asking pupils to think about what important metabolic reactions take place within organisms. Pupils can discuss and try and come up with a brain storm in their books. Pupils then learn about the role of the liver by watching a video and answering questions at the same time, once pupils have finished completing this task they can assess their work using the answers provided on the PowerPoint slide. Next, pupils need to specifically learn about the role of the liver in clearing lactic acid from the body. They will be given an information card and will need to answer some questions using this information, once finished they can mark or peer assess their work. The final activity is an exam-style question about glycogen in the liver, pupils can answer this question in silence at the back of their books (for higher abilities this would be most suitable) or for lower abilities you may allow them to discuss and answer in pairs. Once completed they can mark their worn work. The plenary activity is a list of answers, pupils need to come up with the questions to which these words are the answers. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW (2016) AQA AS-Level Biology – Co-Transport & Absorption of Glucose in the Ileum
SWiftScienceSWiftScience

NEW (2016) AQA AS-Level Biology – Co-Transport & Absorption of Glucose in the Ileum

(0)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module. For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep. You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach! This lesson on co-transport and absorption of glucose in the ileum begins with a starter discussion which asks students to compare and contrast transport and diffusion. They are also asked to discuss the importance of transport rather than diffusion in regard to reabsorption in the kidneys. The first task is a microscope activity for students to work in partner pairs and investigate adaptations of the epithelial cells of the ileum. Students will set up their light microscope to examine prepared slides and answer some questions. Answer samples are in the notes below the slides. The following slides define villi and microvilli for students to note in their books. There is a brief explanation of the relationship between increased surface area and space for carrier proteins. Students are then introduced to the role of diffusion in absorption and should take clear notes regarding facilitated diffusion. They should use the diagram on the slide to discuss why glucose concentration differs between epithelial and ileum cells. Relying on diffusion will only result in the concentrations either side of the intestinal epithelium becoming equal. Students should discuss why this is a problem, and how it might be overcome. The next slide is a complete diagram explaining co-transport of amino acids or glucose molecules. Students should take notes in their books because the next task is to complete a cartoon of this process and summarise the main steps. Students are then asked to ‘think > pair > share’ about the co-transport process and decide whether it is a direct or indirect form of active transport. They should use the details on the slide to inform their discussion. The final task is an exam-style question, with a mark scheme on the following slide for students to self-assess and consolidate their learning from this lesson. The plenary task is to either; summarise the lesson in three sentences, or complete definitions for five key-terms from the lesson. All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - The history of genetics: Mendel HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - The history of genetics: Mendel HT

(1)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, specifically for the higher-tier, biology only specification. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an introduction to the work of Gregor Mendel, students will firstly watch a video and answer questions using the information provided. Once finished with this introductory task pupils can self-assess their work against the marking criteria. The next task focuses on genetic diagrams drawn to represent the crosses Gregor Mendel carried out during his investigations. Pupils will be prompted to draw the genetic diagrams themselves to show the genotypes of offspring of the F1 and F2 generation of pea plants in the example given. There is a prompt which you can reveal for those students of a lower ability. Once this task is complete pupils can check their work against the answers which are provided. Now there is a quick check mid-plenary for pupils to consolidate knowledge of what they have learnt so far, a set of questions is provided and the mark scheme for pupils to check their work against. The next part of the lesson focuses on why Mendel’s important work was not wholly recognised within his lifetime, pupils can read an extract of information and use this to answer questions. Once complete pupils can self-assess their work using the answers provided. The final part of the lesson is looking at how Mendel’s work was imperative to the development of the double-helix model of DNA and subsequent genetic research and discoveries. Pupils will need to read a page of information, in pairs, and answer questions provided on the PowerPoint slide. For those pupils of a lower ability it may be easier to tag read the information and answer questions in groups. Once completed pupils can check their work against the success criteria provided. The final task is for pupils to answer an exam question on this topic, pupils can complete in their books (at the back of their books for an extra challenge) and assess their work using the mark scheme once complete. The plenary task is for pupils to come up with a questions that they would like to ask Mendel about his work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy (2016) Biology - Plant tissues & organs
SWiftScienceSWiftScience

NEW AQA Trilogy (2016) Biology - Plant tissues & organs

(2)
This is a lesson designed to meet specification points for the new Biology Trilogy 'Bioenergetics' scheme of work. The lesson begins by focusing on the location of the main organs in the plant, students are then asked to match the name of the organs to their function. Once this work is self-assessed pupils will watch a video which will outline some of the adaptations a plant has that enables it to carry out photosynthesis. Pupils are then introduced to the major tissues in the leaf of a plant and are given some information on the location, structure and function of these tissues. Using this information pupils are required to complete a worksheet labelling a cross-section of a leaf. Once finished, pupils can use the mark scheme within the PowerPoint presentation to check their work. Students are then asked to consider why plants and the process of photosynthesis is so important. They are reminded of the fact that plants are needed to harness sunlight energy and synthesise organic molecules like glucose which not provides energy to the plant but to all organisms further up the food chain. The final activity is a past-paper question worksheet that pupils should complete in silence, once finished they can either self-assess or peer-assess using the mark scheme provided. The plenary is for students to summarise what they have learnt in the lesson by writing 3 facts, 2 key words and posing 1 question to their peers. All resources are found at the end of the PowerPoint presentation. Thank you for purchasing :)
NEW AQA GCSE Biology (2016) - The human kidney HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - The human kidney HT

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with an outline on the role of the kidney, pupils are asked recap questions on how water enters and leaves the body, which can be self-assessed using the answers provided. The next slide outlines the main functions of the kidney in controlling water and mineral ion balance, pupils will then need to answer questions on this information. This work can be self-assessed using the answers provided on the following slide. Pupils will then watch a video on how the kidneys work, pupils will need to answer questions whilst watching the video. Once the video is finished they can assess their own work using the answers provided. To summarise what the students have learnt so far they will then copy and complete sentences, filling in the blanks with the key words provided. Again, the answers for this task are provided for pupils to assess their work. The next part of the lesson focuses specifically on the release of ADH from the pituitary gland and it's control over the water balance in the body. Pupils are shown a flow diagram of the responses when water levels either rise too high or fall too low in the body. Pupils will then be given a list of statements and will be asked to recreate their own flow diagram to demonstrate this process. This work can then be assessed using the answers provided. The plenary task is for pupils to come up with three summary sentences about what they have learnt this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Biology - Transport in plants
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Biology - Transport in plants

(4)
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology ‘Organisation’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins by pupils observing a diagram of a phloem and a xylem vessel and discussing what the similarities and differences are between the two tissues. This can lead into a class discussion about the two structures. Next is a quick recap task, pupils should have already looked at the overall function of both of these vessels so pupils now need to complete sentences to describe the role of the xylem an phloem vessel in plants. The next activity is a video, pupils will given a set of questions and they will need to answer these questions using the video. Once finished they can self-assess their work using the answers provided on the PowerPoint. Next, pupils will need to draw two columns in their book entitled Xylem and Phloem and sort statements into these two columns, after this is completed they can assess their work. The last thing students will need to consider is why is transport so important in plants, pupils will discuss/brainstorm in their books why sugars, mineral ions and water are important to the plant. The answers can then be revealed to them. The final activity is a past-paper 6 mark question, pupils will need to attempt to answer this on their own, at the back of their books for an extra challenge! Plenary activity is to complete a summary of what the students have learnt that lesson, a list of key words will be provided to help them complete this task. All resources are included in the PowerPoint, any questions please ask me via the comments section. Any feedback of this lesson would be much appreciated :) thank you!
NEW AQA GCSE Trilogy (2016) Biology - Deforestation & peat destruction
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Deforestation & peat destruction

(4)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson outlines the definition of deforestation and some key facts and figures about the destruction of forests around the world. The next task is for pupils to discuss why they think rainforests may be being cut down & the consequences this might have on a local & global scale. The next two slides outlines the four main reasons why rainforests are being destroyed and some of the consequences of their destruction, pupils can check their work against the answers provided. The next task requires pupils to watch a video and answers questions using the information provided in the video, once they have completed the question they can asses their work using the answers provided. Pupils will now be required to complete a recap task on the carbon cycle, they will be given a worksheet which they will be asked to fill in using the captions provided on the PowerPoints slide. Once this has been completed pupils can assess their work using the answers on the PowerPoint slide. The next part of the lesson focuses on the importance of peat, firstly pupils will be given a set of information about peat bogs and they will be required to answer questions using this information. This work can be self or peer assessed once it has been completed. The final task is for pupils to answer an exam-style question on the carbon cycle and deforestation. Pupils can assess their work using the mark scheme provided. The plenary task is for pupils to choose words from a list of key words to formulate three summary sentences on what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Variation
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Variation

(5)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with students given some pictures of a range of people that look differently to one another, students will need to think > pair > share what the differences are between these people and the reasons why they look different to each other. Pupils will then be introduced to the difference between examples of inherited and environmental characteristics. Firstly pupils will focus on inherited characteristics, the students will need to complete a mind map in their books of the traits they have inherited from their parents (or from grandparents). As an extra challenge pupils can consider why they do not look identical to either parent. The next task will focus on environmental characteristics, pupils will need to draw a table in their books and they will need to sort examples of environmental factors with the type of environmental variation they cause into the table correctly. This work can be self-assessed once it is is complete using the answers provided. For the next activity pupils will be given a card sort of different examples of variation, e.g. height, freckles, eye colour, tattoos. Pupils will need to sort these cards into a Venn diagram in their books - just inherited variation, just environmental variation or potentially caused by both. This work can be self-assessed once it is complete. The next part of the lesson focuses on types of data - continuous or discontinuous. Pupils are firstly shown the difference between the two and then they will need to complete a worksheet to assess their understanding on this. Once completed the worksheet can be self or peer assessed. The final task is for pupils to get into teams (or be sorted by the teacher into teams) and they work their way around the room filling in information about themselves for different types of traits (e.g. handedness, foot length, whether they can roll their tongue). Pupils will assigned one trait each and will need to produce a graph of the class results. This will test their understanding of continuous vs. discontinuous data and how this should be represented in a graph format. The plenary task is for pupils to consider a world where there was no variation and discuss the advantages and disadvantages of this world, trying to use some of the key words provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - Dialysis & kidney transplants HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - Dialysis & kidney transplants HT

(4)
This lesson is designed for the NEW AQA Biology GCSE, particularly the 'Homeostasis' SoW and for higher tier pupils. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to the reasons why a patient might be suffering with kidney damage and introduced to the treatments pupils will be learning about this lesson: dialysis and kidney transplants. For the next part of the lesson pupils will then need to get into four groups, two groups will read information on the treatment of dialysis and two will read information on kidney transplants. Using this information pupils will answer questions in their book and once a group has finished with one of the treatments, they should swap with another groups and answer questions about the other treatment. This task should take 40 minutes in total, once finished pupils should self-assess their work using the answers provided on the PowerPoint presentation. The last activity is for pupils to answer an exam-style question on the function of the kidneys and treatment for patients with kidney disease, once completed pupils can mark their work using the mark scheme provided. The plenary task is a 3-2-1 task, pupils write down 3 facts, 2 key words and 1 question to test peers knowledge of the topic of the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Bioenergetics' lessons
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Bioenergetics' lessons

12 Resources
This bundle of resources contains 9 lessons which meet all learning outcomes within the ‘Organisation’ unit for the NEW AQA Biology Specification. 1. Plants tissues & organs 2. Photosynthesis 3. Products of photosynthesis 4. The rate of photosynthesis (limiting factors) 5. Making the most of photosynthesis 6. Aerobic Respiration 7. Anaerobic Respiration 8. The response to exercise 9. Metabolism and the liver The lessons contain a mix of differentiated activities, mid-lesson progress checks, extra challenge tasks, exam-style questions and more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) Biology - The Carbon Cycle
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - The Carbon Cycle

(3)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The first part of the lesson focuses on outlining the importance of carbon within the living world, where we might find it in our bodies and the world around us. The first task pupils will be asked to complete is a mind map of the processes they think will add or remove carbon dioxide from our atmosphere. Pupils can discuss in pairs and once complete the answers can be revealed for pupils to assess their work. The next task is for pupils to watch a video about greenhouse gases, there are a set of questions pupils will be given which they need to answer whilst watching the video. Once this task is complete pupils can assess their work using the answers provided. The next task is a fill-in-the-blanks task, pupils are given a paragraph about the role of carbohydrates in animals and plants, they need to complete this using the key words provided. Once completed pupils can assess their work using the answers provided. Pupils will then watch a video about the carbon cycle which details the process involved, once the students have watched the video they will be given a worksheet which they need to complete using the captions provided on the PowerPoint slide. Lower ability students may want to complete this as a group & could perhaps complete whilst the video is playing to assist them. Once they have completed the task pupils can self-assess their work using the answers provided. The next task may be better suited to higher ability pupils, a set of cards images and captions are provided per pupil and they need to use this to construct their own carbon cycle in their books. Higher ability pupils may want to test their knowledge and turn to their back page to complete this without looking at their previous work The last task is for pupils to consider the future and how we may be able to implement strategies to help reduce our carbon emissions in order to combat global warming. Pupils are to discuss possible methods/strategies we could use and mind map their ideas in their books. The plenary task is for pupils to turn to the back of their books and write down a description of as many processes which contribute to the carbon cycle as possible. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology (2016) - Controlling body temperature HT
SWiftScienceSWiftScience

NEW AQA GCSE Biology (2016) - Controlling body temperature HT

(2)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW and for higher tier students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson begins with a recap of normal body temperature and what happens if the temperature falls above or below this temperature. Pupils will also be introduced to the role of the thermoregulatory centre and thermoregulatory receptors in monitoring body temperature. Pupils are then asked to discuss and produce a list of mechanisms that helps the body to cool down on a hot day. This leads onto describe the role of sweating and vasodilation in cooling the body down. Pupils are then asked to consider what they think might happen if the body becomes too cold and again produce a list of mechanisms which might help warm it up. Using the PowerPoint slides the mechanisms of shivering and vasoconstriction will be demonstrated to pupils. Using this information pupils will need to copy and complete a flow diagram to demonstrate the role of thermoregulatory centre in controlling body temperature, this can be self-assessed once it has been completed. Pupils will now copy and label a diagram of the skin to show the position of sweat glands, hair, hair muscle and blood vessels, this can be marked once it has been completed. The next activity is for pupils to sort statements into two columns - one describing what happens when the body is too hot and one for when the body is too cold. Once completed the mark scheme can be used by pupils to self or peer-assess their work. The final activity is a 6-mark exam-style question on this topic, pupils should try and complete this in silence and at the back of their books to really test their knowledge of this topic. Once complete the mark scheme can be used for pupils to mark their own work. The plenary task is for pupils to pick a summary question of their choice from the two provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Biology - 'Ecology' lessons ' HT only
SWiftScienceSWiftScience

NEW AQA GCSE Biology - 'Ecology' lessons ' HT only

5 Resources
This bundle of resources contains 5 whole lessons which meet all learning outcomes for the higher tier, separate science modules within the ‘Ecology’ unit for the NEW AQA Biology Specification. Lessons included: Rates of decomposition Global warming & the impact of change Trophic levels & biomass Transfers of biomass Food production The lessons contain a mix of differentiated activities, progress checks, extra challenge questions and exam questions plus more than one opportunity, per lesson, for self/peer red-pen assessment of tasks.
NEW AQA GCSE Trilogy (2016) Biology - Selective Breeding & Genetic Engineering Homework
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Selective Breeding & Genetic Engineering Homework

(2)
his task is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Inheritance, variation & evolution’ SoW. For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA A-Level Biology 'Eukaryotic Cell Structure' - Dominoes Revision Activity
SWiftScienceSWiftScience

NEW AQA A-Level Biology 'Eukaryotic Cell Structure' - Dominoes Revision Activity

(0)
This task is designed for the NEW AQA A-Level Biology, particularly the ‘Cells’ unit. For more resources designed to meet specification points for the NEW AQA A-Level specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity is a revision activity for the ‘Cells’ unit, students can either have a card each and the task can be completed as a card loop activity with the whole class. Alternatively, students could work in pairs and be given a set of the shuffled cards, they will then need to arrange the cards into the correct sequence so that the sentences make sense (like dominoes tiles). When students carry out this version of the activity, I often have a prize for the students who complete the task in the fastest time! The solution for this activity is included so you can check their answers. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Biology - Non-communicable Diseases Homework
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Biology - Non-communicable Diseases Homework

(6)
This task is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Infection & Response’ SoW. For more resources designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This activity contains a set of differentiated questions worth 20 marks in total, it also includes additional extra challenge tasks for higher ability students to complete. This worksheet could be used as a homework or as an extension or revision activity in class. I have included a comprehensive mark scheme for teacher or self-assessment of the work, there are also details of grade boundaries which I use to RAG pupils work against their target grades, a full explanation of how I do this is included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)