I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course.
All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW, it contains some higher-tier only content.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson firstly begins with a description and definition for gene expression in a cell, this leads onto introduce the idea of a mutation. Pupils are given a definition of a mutation and are asked to consider whether mutations are always negative effects. This leads onto show the ways in which a mutation can affect a protein/enzyme in the body and the effect that could have on the function of body processes. Next is a quick check-silent 5 activity to assess students knowledge of gene expression and mutation, pupils can answer the questions in their book and mark their work using the answers provided. There is on further activity on mutations, pupils will watch a video on sickle cell anaemia and answer questions in their books.
The next section of the lesson is on inheritance, firstly pupils are introduced to the idea of alleles and are shown the genotypes of three rabbits with either black or white fur colour to show that it is the combination of alleles that determines this characteristic. Pupils are asked to complete some questions based on what they have learnt so far, which can be assessed using the answers provided.
Next pupils are introduced to the difference between genotype and phenotype, homozygous and heterozygous genotypes. Pupils will then be given a set of images and are asked to identify whether these images are representing a genotype or phenotype, if it is a genotype they are asked to determine if it is homozygous or heterozygous. This work can then be assessed.
Pupils are now shown how to construct a genetic diagram using a worked example, they are then given another genetic cross for which they need to construct their own genetic diagram and work out the percentage of each offspring that would be present, this work can be self-assessed.
The final task is on sex determination, pupils are introduced to the idea of X & Y chromosomes and are shown the combinations needed to produce a male or a female. Pupils will need to construct their own genetic diagram to show the percentage chance of a baby being male or female. This topic can also be assessed using an exam-style questions for higher ability pupils.
The plenary activity is for pupils to write a glossary in the back of their books for any new key words they have learnt this lesson
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This a resource aimed at the new AQA GCSE Biology specification as part of the 'infection & response' unit.
This lesson is part of a 12 lesson bundle for the NEW 'Infection & Response' Unit, found in my TES shop - https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a recap of what makes a good medicine. Pupils are then given a scenario where they have to read some information cards on different medicines and using the information they need to decide which medicine would be the best to treat a bacterial infection.
The next PowerPoint slide will go through the difference between antibiotics and painkillers and hopefully students should have chosen the antibiotic as the drug to treat bacterial infections in the previous activity.
Next is an introduction to Alexander Fleming, the scientist who first discovered penicillin. Pupils can watch a video on his work and answer questions on a worksheet. Pupils can then peer-assess their work.
The next few slides focus on how the growth of bacteria are affected by antibiotics, pupils can then use some data on the growth of bacteria to answer some questions.
For the plenary pupils need to choose the correct word to complete the sentences.
Other lessons for the NEW AQA 'Infection & Response' unit can be found in my TES shop.
Thanks :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
The first part of this lesson will focus on a recap of some of the details learnt during the decay lesson, pupils are given a set of four multiple choice questions which they should answer in their books and then self-assess.
The first task introduces recycling of materials in the ecosystem, pupils will need to read through a paragraph of information as a class. The slide will then be changed and pupils will need to try to recreate the paragraph as best as they can using the key words provided. Once completed the slide can be changed back to the initial paragraph for pupils to check and correct their work.
The next part of the lesson is for pupils to look at the difference between a decomposers and detritivores, students will be given information in pairs and will need to teach each other about the organism card they have in their hands. Students will then try to write a description of each of the organisms in their books.
The next part of the lesson focuses on the water cycle, firstly students will need to come up with as many processes as they can think of that contribute to the water cycle. Once this task has been assessed pupils will then be given a set of questions which they will need to answer whilst watching a video, once complete their answers can be assessed using the mark scheme provided.
Using their answers from their previous tasks pupils will now need to match up the key words to the definition and the final task is for pupils to complete a diagram of the water cycle using the key words and definitions provided in the last task.
The plenary task pupils will be given a set of 5 answers, it is up to the pupils to come up with 5 questions which may correspond to these 5 answers.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the KS3 Year 8 Science course, specifically the B2 1.3 unit on Adaptation & Inheritance.
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson begins with a video on inheritance, students should watch the video and whilst watching this they will answer a set of questions about chromosomes and where these structures are found within a cell. Once this task is complete, students can self-assess their work using the mark scheme provided.
Next, students are introduced to the idea of a gene. Students will be given the definition of a gene and will then need to complete a ‘Memory Test’ task which helps students to identify the locations of genes, chromosomes, the nucleus and cell membrane. Students will get a few minutes to study this image, they will then need to recreate it in their books. This task can then be self-assessed using the mark scheme provided.
Next, students are shown another image, they will need to use what they have learned so far this lesson to identify the different structures. They can discuss their ideas in pairs before the answers are revealed using the PowerPoint. Students will then need to complete a ‘Who Am I?’ task, - matching the names of structures to the correct description. The mark scheme for this task is included in the PowerPoint so students can self-assess their work once it is complete.
Students will now be shown a diagram to depict how fertilisation takes place, a sperm and egg cell meeting, nuclei fuse and genetic material joins together to form an embryo where each body cell (except sex cells) contains 46 chromosomes. Students could sketch a diagram of this in their books.
Lastly, students will watch a video on the discovery of DNA by Watson & Crick. Whilst watching the video they will need to answer a set of questions, once this task has been completed students should self-assess their answers using the mark scheme provided.
The plenary task is an ‘Anagram Challenge’ - students would need to unscramble a set of words to reveal 6 key words from this lesson. There is an ‘Extra Challenge’ task for students to come up with a definition for each of these key words, the answers to the anagrams are included.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Organisation’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by identifying what metabolic rate is and then asking pupils to think about what important metabolic reactions take place within organisms. Pupils can discuss and try and come up with a brain storm in their books.
Pupils then learn about the role of the liver by watching a video and answering questions at the same time, once pupils have finished completing this task they can assess their work using the answers provided on the PowerPoint slide.
Next, pupils need to specifically learn about the role of the liver in clearing lactic acid from the body. They will be given an information card and will need to answer some questions using this information, once finished they can mark or peer assess their work.
The final activity is an exam-style question about glycogen in the liver, pupils can answer this question in silence at the back of their books (for higher abilities this would be most suitable) or for lower abilities you may allow them to discuss and answer in pairs. Once completed they can mark their worn work.
The plenary activity is a list of answers, pupils need to come up with the questions to which these words are the answers.
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on Osmosis begins with a discussion to review diffusion and osmosis, students should think about what they remember from GCSE.
After defining osmosis and water potential, students will watch a short video and answer worksheet questions. Answers are available on the next slide for self-assessment.
To test the students’ knowledge, they will then practice identifying direction of movement from water potential of two plant cells. They can use mini whiteboards to pick a movement direction, or lack thereof!
To further the lesson on water potential, students will consider isotonic, hypertonic, and hypotonic solutions. They will then practice matching these terms to their definitions before completing a worksheet to demonstrate how these conditions affect red blood cells. Answers for self-assessment are on the next slide.
This information is synthesised by a quick discussion of osmosis in onion cells. Then, using their whiteboards to test their understanding of water potential, students will identify what is happening to cells in a series of pictures.
Students will then practise by working through a few exam-style questions and self-assessing to the answers provided in the slides.
As a plenary the students should write three sentences summarising what they have learned in this lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Inheritance, variation and evolution’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins with a video and a set of questions which pupils will need to answer about extinction and try and come up with a definition for this term. Once completed pupils can check their work against the answers provided on the PowerPoint.
The next activity is for pupils to think > pair > share ideas about the sorts of changes that might occur within an organisms environment to bring about extinction. Pupils can discuss with their partner and create a mind map of their ideas in their books. Once pupils have completed this you can reveal some of the reasons for environmental change on the PowerPoint slide and pupils can check what they have got against the answers, adding in any they didn’t manage to get.
The next activity is for pupils to read some cards of information about the causes of extinction, pupils can work in pairs or groups to read through these causes and summarise each one in their books.
To put thees causes into context, the next activity is for pupils to look at examples of organisms which are at the brink of extinction and the reasons why. Pupils will be given a set of cards with information about a range of animal and plant organisms which are at different stages on the IUCN red list. Pupils will need to complete a table of information to describe the habitat and reasons why four of these organisms are endangered.
The last part of the lesson will focus on mass extinctions, pupils will watch a video and answer questions about the causes and repercussion of mass extinction events. Once completed pupils can mark their work against the assessment criteria.
The plenary activity is for pupils to pretend they are a conservationist campaigning to protect an organism of their choice, they need to write a twitter message to their followers to raise awareness of the factors which may be critically affecting the organism.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first part of the lesson asks students to think > pair > share some of their answers to questions about pollution - where does it come from? How may we monitor it? Once pupils have gathered together their ideas as groups, a class discussion can highlight some of the important ideas & the next slide details the answers.
The next task focuses on sulfur dioxide pollution and it’s contribution to the formation of acid rain. Pupils will be given some information in pairs about this pollutant and will be required to answer questions about this information in their books. Once completed pupils are able to self-assess their work using the answers provided in the PowerPoint.
The next part of the lesson is on catalytic converters, pupils will be given some information about a catalytic converter and a human bingo grid. Pupils will wander around the room and others will ask them questions in order to fill in their bing grid. Once a student has completed their grid they can shout bingo! When everyone has had enough time to complete the grid they will need to self-assess their work using the answers provided.
The next task is for pupils to consider alternative fuels as a way of reducing air pollution. Pupils are given sets of information about three alternative fuels, they will then need to fill in a table of the advantages and disadvantages of these fuels. Once completed pupils can check their work against the answers provided, marking and correcting their answers.
A mid-lesson progress check requires pupils to identify whether a set of statements are true or false, this can be completed with a mini whiteboard or in their books.
The next part of the lesson focuses on how scientists can monitor pollution, pupils are given a set of results from particle collector pads which have been left in certain locations around the UK. Pupils need to record their results in a table, draw a graph to represent the results and write a conclusion about their results.
The plenary task is for pupils to complete a fill-in-the-blanks task on air pollution, pupils can also self-assess their work using the answers provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Biology GCSE, particularly for the higher tier for the 'Infection & Response ’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins with a starter discussion to remind students about communicable disease, and which bacteria are harmful.
The next slides introduce and define pathogens, and some harmful and non-harmful bacteria. They will then watch a short video which explains the differences between viruses and bacteria then complete a Venn diagram task.
The next task is a true/false activity to complete as a class and asses their understanding thus far. Students are then directed to work in pairs to make a mind map in their books describing how pathogens are spread.
Students will then be instructed to work on their own to answer three questions about pathogens spreading. Answers are on the following slide for self-assessment.
The plenary task is an exam style question, students can self-assess to the mark scheme on the last slide.
All resources are included at the end of the presentation.
Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the 'Homeostasis' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils will start the lessons by considering why a reflex action is important to living organisms and asking pupils to consider any examples they can think of. After revealing the importance of reflex actions and come examples, the slides then move on to look at the pathway an electrical impulse takes along a reflex arc. Pupils will delve a little deeper into this by watching a video, during which they can answer questions. Once this has been completed they can self-assess their work using the answers provided. This process can also be summarised using a copy and complete exercise.
Next, the lesson focuses on synapse, a diagram of a synapse is shown with key details labelled, there is also a link to an animation that can be shown to demonstrate what occurs at the gap between neurons. After this has been demonstrated pupils are then asked to complete some tasks to show their understanding of what occurs at a synapse.
The next activity involved a set of statements which are muddled up, pupils need to put them into the correct order to correctly describe the steps involved with a reflex arc. Once this has been completed pupils can assess their work using the model answer provided.
The final activity is a past-paper question which can be printed for pupils or they can complete in their own books, this needs to be self or peer assessed once complete.
The plenary task is for pupils to pick a task - either to summarise the work from the lesson using a list of key words or for pupils to come up with questions for the list of answers that are provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Cells’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson on co-transport and absorption of glucose in the ileum begins with a starter discussion which asks students to compare and contrast transport and diffusion. They are also asked to discuss the importance of transport rather than diffusion in regard to reabsorption in the kidneys.
The first task is a microscope activity for students to work in partner pairs and investigate adaptations of the epithelial cells of the ileum. Students will set up their light microscope to examine prepared slides and answer some questions. Answer samples are in the notes below the slides.
The following slides define villi and microvilli for students to note in their books. There is a brief explanation of the relationship between increased surface area and space for carrier proteins.
Students are then introduced to the role of diffusion in absorption and should take clear notes regarding facilitated diffusion. They should use the diagram on the slide to discuss why glucose concentration differs between epithelial and ileum cells. Relying on diffusion will only result in the concentrations either side of the intestinal epithelium becoming equal. Students should discuss why this is a problem, and how it might be overcome.
The next slide is a complete diagram explaining co-transport of amino acids or glucose molecules. Students should take notes in their books because the next task is to complete a cartoon of this process and summarise the main steps.
Students are then asked to ‘think > pair > share’ about the co-transport process and decide whether it is a direct or indirect form of active transport. They should use the details on the slide to inform their discussion.
The final task is an exam-style question, with a mark scheme on the following slide for students to self-assess and consolidate their learning from this lesson.
The plenary task is to either; summarise the lesson in three sentences, or complete definitions for five key-terms from the lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This is a lesson for the new AQA GCSE Biology Specification, it particularly meets specification points from the 'Infection & Response' unit.
This lesson is part of a 12 lesson bundle for the NEW 'Infection & Response' Unit, found in my TES shop - https://www.tes.com/teaching-resources/shop/SWiftScience
The lesson begins by pupils thinking about the type of risk-factors that increases someone's chances of developing cancer. The lesson then goes on to introduce the definition of cancer and identifies some of the parts of the body that cancer can most commonly affect.
Pupils are then given, in pairs, the definition of malignant and benign tumours, they will need to teach their peer the definition of this word for their peer to write down - not just read it and copy it from the piece of paper!
The slide will outline what happens if the cancer metastasises, there is a video demonstrating how cancer can spread from one part of the body to another.
The next activity pupils are given a grid with symbols/diagrams on, pupils will need to identify the risk-factors of cancer that these diagrams represent. Some are a little more difficult than others, I have included the names of the more difficult ones on the board but you can it more/less challenging to suit the ability of your class. Once finished pupils can self-assess their work using red pens.
For the plenary pupils will answer a past-paper question and then peer-assess their work.
This lesson is designed to meet specification points for the NEW AQA Trilogy GCSE Biology 'Organisation' SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy Biology, Chemistry and Physics specifications please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
Pupils will firstly be introduced to guard cells and stomata and how they are able t control the loss of water from the plant, diagrams of guard cells turgid and flaccid will help with this description.
Pupils will then be given a set of questions which they will complete using a video, once completed pupils can then assess their work using the answers provided.
The next slide shows the process of transpiration, pupils are shown a diagram and then descriptions of each stage in the transpiration process are shown stage by stage. You may need lower ability pupils to copy the stages up off the board in note form first. For higher ability pupils after you have gone through it a couple of times you can move the slide forward and pupils will need to write a description of the process of transpiration using the list of key words and diagram as a cue.
After this has been completed pupils will then focus on the factors affecting the rate of transpiration, pupils will each be given a slip of information about a factor and how it affects the loss of water from the plant. Pupils will need to swap information with those around them to complete their table. If pupils do not quite finish this task they can assess their work using the completed table provided in the PowerPoint.
The last activity is for pupils to complete exam questions on the topic of the lesson. Pupils will be given 6 minutes as it is worth 6 marks, they should try and complete the question in silence at the back of their books if possible.
The plenary task is for pupils to write down 6 key words from the lesson.
All resources are included in the PowerPoint slides, please let me know if you have any questions in the comments section and leave feedback if you download and use :) thanks!
This is a resource for the NEW AQA GCSE Biology specification, covering specification points within the ‘Infection and Response’ module.
For more resources aimed at the NEW AQA GCSE specifications please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This resource contains the PowerPoint for the lesson, the resources are found at the end of the PowerPoint.
The lesson begins with considering what is important in a new medicine and what scientists need to think about when developing new medicines. This goes on to define some of the key factors such as safety, efficacy & stability.
Next, is an introduction of how a vaccination works, pupils will watch a video and answer questions on a worksheet. Pupils will self-asses their work.
Pupils will then complete a cartoon strip of how a vaccination works, trying to use as many key words as possible. Pupils should self-assess their work against correct use of key terminology.
The plenary will test the pupils knowledge of their ability to describe how a vaccine works. They will need to turn to the back of their books and describe how a vaccine works, using as many of the key terms as possible.
Resources are all found at the end of the PowerPoint.
Enjoy :)
This is a lesson which meets specification points in the NEW AQA GCSE (2016) 'Cells' SoW.
Other lessons from this SoW and other AQA GCSE Trilogy Sow for the new specification can be found in my TES shop.
This lesson begins by watching a video about the structure of cells and where to find the genetic information, pupils will watch the video and answer questions (provided in the PowerPoint presentation.)
Pupils will then be presented with a labelled diagram of a cell, nucleus, chromosome and gene. Pupils will be required to analyse the diagram for a few minutes (you can include a stop clock on the board). The screen will then be changed and pupils will be given a blank copy of the diagram which they will need to complete from memory - pupils can then peer-assess their work.
In the next activity, pupils are shown diagrams of a cell with a nucleus visible, DNA, a gene and a chromosome. Pupils can either create a flow chart by cutting and sticking the diagrams in order from largest to smallest and then labelling them. Alternatively, they could draw their own diagrams and label them. Pupils can then self-assess their work using red pens.
The next activity, pupils are given a series of words and definitions, they will need to match the key words up to the correct definition. Pupils then self-assess their work.
Their are two option for the plenary activity, for lower ability classes pupils will be required to fill in the blanks in a paragraph describing the structure and function of genetic information and where it is found within the cell. The second plenary is a past-paper question, pupils can answer this in their books and then peer-assess using red pens.
All resources are included, please leave a review with feedback :). Thanks!
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first part of this lesson focuses on biodiversity, pupils will watch a video and have to answer questions whilst watching the video. Once complete pupils can self-assess their work using the answers provided in the PowerPoint.
The next slide shows a graph depicting the human population growth in the last 8000 years and information describing the effect this is having on our planet.
The next part of the lesson focuses on human impacts on biodiversity. Firstly pupils will need to come up with a mind map of all the ways in which humans use the land. As an extension task pupils can also discuss what impact this may be having on our environment. Some key ideas will then be gone through using information provided on the PowerPoint.
Pupils will then watch a video on human impacts on biodiversity, using the information in the video they will need to answer a set of questions. Once this task is complete pupils can self-assess their work using the answers provided.
The next task focuses on waste produced from human activities, each pupil will be given a card of information on a specific pollutant and the effect it has on the environment. Pupils will need to walk around the room trading information in order to complete a table of information on these pollutants.
The very last task is an exam-style question, higher tier pupils can complete this question in the back of their books without looking at their notes from the lesson. Once completed pupils can assess their work using the mark scheme provided.
The plenary task is for pupils to write 3 facts, 2 key words and 1 question on what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Homeostasis’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
This lesson begins by students considering in pairs/groups the names of different methods of contraception they have already heard of, they can create a mind map in their book which can then be checked against the list provided.
Pupils will then watch a video which runs through some of the types of contraception out there and their pro’s and con’s, pupils will need to watch the video and note down as many advantages and disadvantages of these methods of contraception as they can. This task can be self-assessed using the answers provided.
In the next activity pupils will be given a card sort in pairs or in groups, they will need to read through the information on methods of contraception and complete a table to summarise how these methods work or prevent pregnancy as well as their advantages and disadvantages.
The next part of the lesson looks at the history of contraception, pupils will watch a video about Margaret Sanger - a progressive nurse in New York during the early 20th century. They will need to answer questions whilst watching the video, once finished their answers can be checked against the mark scheme provided.
The final task is a ‘quick check -silent 5’ task, pupils will need to answer the summary questions about what they have learnt this lesson into their books.
The plenary activity is for pupils to summarise what they have learnt this lesson in three sentences, using the list of key words that have been provided.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 B1.1 Module on ‘Cells’
For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience.
The lesson starts with an introduction to the definition of ‘specialised’, which follows on to define a ‘specialised cell’ as a cell that has special structures/features to help it carry out its job.
Students are then shown some diagrams of specialised cells and are shown a video, whilst watching the video they are asked to note down as many specalised cells as they can. This work can then be checked and corrected using the answers provided on the PowerPoint.
Students will now each be given a card of information about a the structural features and functions of certain specialised cells. Students will need to walk around the room, sharing information in order to complete a summary table.
Finally, students are asked to complete an ‘Assessment Task’, which is a set of exam-style questions based upon what they have learned the last two lessons. Students can write their answers in their books, the mark scheme for these questions is included so students can assess their work.
Lastly, students are asked to complete a ‘Job Advert’ for one of the specialised cells they have learned about this lesson, the advert should include a description of the job itself and the sort of traits required to perform the job.
The plenary task requires students to copy and complete a set of sentences to summarise what they have learned this lesson.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA AS-level Biology course, particularly the ‘Biological Molecules’ module.
For more lessons designed to meet specification points for the NEW AQA A-level Biology course please visit my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
A-Level lesson format: I teach in more of a lecture style compared to GCSE. In the majority of my A-level lessons the beginning portion of the lesson is mainly teacher-led, where students are expected to take notes onto a handout/in their books. This is then mixed in with student-led activities, as well as questions and exam prep.
You will find some of my slides have blank spaces for you to add more detail/descriptions/explanations. If you look at the ‘Notes’ section underneath each of these slides, you will find additional content which you can add in as you teach!
This lesson begins with a starter discussion to review the enzymes needed for DNA replication and the process of DNA replication itself. Students are then asked to make a list in their books of all of the biological processes that require energy.
Students are then taught to think of ATP as an ‘energy currency’ and on the following slide asked to define the parts of the structure of ATP before reviewing ATP’s function. Students should use the ‘ATP handout’ to take notes.
The next task asks students to answer a few questions on their mini whiteboards and discuss with a partner how ATP releases energy. Answers for self-assessment are on the next slide.
The following slides explain the synthesis, roles, and properties of ATP. You will find further details for these slides in the ‘notes’ section under each slide. Students are then encouraged to ‘think > pair > share’ some ideas of why ATP’s properties might be useful to the role of ATP in cells. Answers for self-assessment are on the following slide.
Students are then given an activity task to demonstrate knowledge of energy-requiring processes. Each student will be given a description of a process, these can be found at the end of the slideshow, there are five processes in total. Students should then work in small groups to teach each other the different processes and produce a table to represent what they’ve learned.
After completing the lecture and tasks students are given four summary questions to answer in their books and self or partner-assess. Students should then make note of the summary slide before concluding the lesson.
All resources are included. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
This lesson is designed for the NEW AQA Trilogy Biology GCSE, particularly the ‘Ecology’ SoW.
For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
The first task involves pupils discussing the definitions for a set of ecological terms, pupils can write their ideas down in their books and then watching a video to fill in any blanks they were unsure of. Once this has been completed pupils can self-assess their answers using the mark scheme provided.
The next task is for pupils to think > pair> share about how animals are interdependent upon each other, they can write down their ideas as a brain storm in their books. Once this has been completed, pupils can self-assess their work using the answers provided.
Pupils will then be given some information on stable communities, they will need to read this information in pairs and then try and answer a set of questions. They can then self-assess their work, correcting anything they didn’t get correct using the answers provided.
Pupils will now be introduced to the difference between abiotic and biotic factors, the first task is for pupils to watch a video and sort the factors demonstrated in the video into two columns – abiotic vs. biotic. They will then be given a set of descriptions, pupils will firstly need to identify which factor is for a list provided and the second task is for pupils to identify whether this factor is biotic or abiotic. Pupils can complete this on the worksheet provided, once completed students can either self-assess or peer-assess their work, making any corrections if necessary.
The plenary task is for pupils to choose two organisms from the pictures on the PowerPoint slide, they will need to describe the difference in habitats between the organisms and compare the abiotic and biotic factors which affect their survival.
All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)