Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
2 Lesson bundle covering the AS Chemistry topic on Ionisation Energy. Suitable for OCR, AQA and Edexcel
Lesson 1: Ionisation Energy (Part 1)
Define the term ‘first ionisation energy’ and successive ionisation energies
Describe the factors affecting ionisation energy
3)Explain the trend in successive ionisation energies of an element
Lesson 2: Ionisation Energy (Part 2)
Explain the trend in first ionisation energies down a group
Explain the trend in first ionisation energies across period 2
Explain the trend in first ionisation energies across period 3
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
This discounted bundle includes:
A full double lesson on synthetic routes in organic synthesis (all answers included)
A follow up homework task (all answers included)
A full revision summary of the year 12 & 13 organic reactions (perfect for making flashcards!)
The full double lesson will cover the following learning objectives
i) To identify individual functional groups for an organic molecule containing several functional groups
ii) To predict the properties and reactions of organic molecules containing several functional groups
iii) To create multi-stage synthetic routes for preparing organic compounds
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
2 structured lessons covering topics from AS Chemistry haloalkanes and their reactions from the OCR Specification
Lesson 1: Haloalkanes and their Reactions (part 1)
**LO1. To define and use the term nucleophile
LO2. To outline the mechanism for nucleophilic substitution of haloalkanes
Lesson 2: Haloalkanes and their Reactions (part 2)
**LO1. To explain the trend in the rates of hydrolysis of primary haloalkanes in terms of the bond enthalpies of carbon-halogen bonds
LO2. To describe how the rate of hydrolysis of haloalkanes can be determined by experiment using water, ethanol and silver nitrate solution
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Two lesson bundle covering the three types of intermolecular forces for the OCR Specification (but also applicable to AQA and Edexcel specification)
Lesson 1: Intermolecular Forces (Part 1) covers London forces and Permanent Dipole-Dipole Interactions. In lesson 1 students will:
Understand intermolecular forces based on induced-dipole interactions and permanent dipole-dipole interactions
Explain how intermolecular forces are linked to physical properties such as boiling and melting points
Compare the solubility of polar and non-polar molecules in polar and non-polar solvents
Lesson 2: Intermolecular Forces (part 2) covers Hydrogen Bonding. In lesson 2 students will:
Understand hydrogen bonding as intermolecular forces between molecules containing N, O or F and the H atom of –NH, -OH or HF
Construct diagrams which illustrate hydrogen bonding
Explain the anomalous properties of H2O resulting from hydrogen bonding
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
2 well structured chemistry lessons covering the Year 12 OCR topic of: **Organic Synthesis **
Lesson 1: Practical skills for organic synthesis
To demonstrate knowledge, understanding and application of the use of Quickfit apparatus for distillation and heating under reflux
To understand the techniques for preparation and purification of an organic liquid including:
Lesson 2: Synthetic routes in organic synthesis
To identify individual functional groups for an organic molecule containing several functional groups
To predict the properties and reactions of an organic molecule containing several functional groups
To create two-stage synthetic routes for preparing organic compounds
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
2 Full Lesson Bundle on Proton NMR Spectroscopy. suitable for the OCR A Level Chemistry specification. Please review the learning objectives below.
Lesson 1: Proton NMR Spectroscopy (Part 1)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The number of proton environments in the molecule
ii) The different types of proton environment present from chemical shift values
Lesson 2: Proton NMR Spectroscopy (Part 2)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The different types of proton environment present from chemical shift values
ii) The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required
iii) The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule
iv) Possible structures for the molecule
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
2 Lesson bundle covering the OCR Periodic Table Chapter on group 2 elements and compounds
Lesson 1: Group 2 Elements
By the end of this lesson. Students should be able:
To know group 2 elements lose their outer shell s2 electrons to form +2 ions
To state and explain the trend in first and second ionisation energies of group 2 elements and how this links to their relative reactivities with oxygen, water and dilute acids
To construct half equations of redox reactions of group 2 elements with oxygen, water and dilute acids and to identify what species have been oxidised and reduced using oxidation numbers
Lesson 2: Group 2 Compounds.
By the end of this lesson students should be able:
To know the reaction between group 2 metal oxides and water
To state the trend in solubility and alkalinity of group 2 metal hydroxides
To describe the uses of some group 2 compounds including their equations
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
2 Full Lesson Bundle covering the topic of Acid-Base Titrations for the OCR Specification (Year 12). See below for the lesson objectives.
Lesson 1: Acid-Base Titration Procedures
By the end of the lesson students will be able to:
Outline the techniques and procedures used when preparing a standard solution of required concentration
Outline the techniques and procedures used when carrying out acid–base titrations
Determine the uncertainty of measurements made during a titration practical
**Lesson 2: Acid-Base Titration Calculations **
By the end of the lesson students will be able to:
Apply mole calculations to complete structured titration calculations, based on experimental results of familiar acids and bases.
Apply mole calculations to complete non-structured titration calculations, based on experimental results of non-familiar acids and bases
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
3 Full Lesson Bundle which covers the Kinetics chapter from the OCR AS Level Chemistry Specification (may also suitable for the AQA and Edexcel Spec- see Learning Objectives below to confirm)
Lesson 1: Collision Theory & Rates of Reaction
**1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
**2. To calculate the rate of reaction using the gradients of a concentration-time graph
**3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Lesson 2: Catalysts
**1. To explain the effect of concentration (including pressure of gases only) on the rate of reaction in terms of the frequency of collisions
**2. To calculate the rate of reaction using the gradients of a concentration-time graph
**3. To describe the techniques and procedures used to investigate reaction rates including the measurement of mass, gas volumes and concentration
Lesson 3: The Boltzmann Distribution
**1. To draw a labelled diagram of the Boltzmann distribution
**2. To explain qualitatively the Boltzmann distribution and its relationship with activation energy
**3. To explain how temperature changes and catalytic behaviour effect the proportion of molecules exceeding the activation energy and hence the reaction rate using Boltzmann distributions
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
3 structured lessons covering topics from AS Chemistry Alkanes from the OCR Specification
Lesson 1: Properties of Alkanes
To know alkanes are saturated alkanes containing sigma (σ)bonds that are free to rotate
Explain the shape and bond angle round each carbon atom in alkanes in terms of electron pair repulsion
Describe and explain the variations in boiling points of alkanes with different carbon chain lengths and branching in terms of London forces
Lesson 2: Combustion of Alkanes
To understand why alkanes are good fuels
To recall the equations (both word and symbol) for complete combustion of alkanes
To recall the equations (both word and symbol) for incomplete complete combustion of alkanes
Lesson 3: Free Radical Substitution of Alkanes
1)To know what a free radical is
2) To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination
3) To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
2 well structured chemistry lessons, plus a revision summary covering the Year 13 OCR topic of: Organic Synthesis. See below for the lesson objectives and resource description:
Lesson 1: Practical Skills in Organic Synthesis (Yr13)
To describe the techniques and procedures used for the purification of organic solids including:
filtration under reduced pressure
recrystallisation
measurement of melting points
Lesson 2: Synthetic Routes in Organic Synthesis (Y13)
To identify individual functional groups for an organic molecule containing several functional groups
To predict the properties and reactions of organic molecules containing several functional groups
To create multi-stage synthetic routes for preparing organic compounds
Synthetic Routes Revision Summary
A 14 page summary of all the organic synthesis reactions from the AS and A level OCR Chemistry specification. Students will be able to use this resource directly as part of their revision on organic synthesis/synthetic routes or can make flashcards from them. Reagents and reaction conditions are also included where applicable
Reaction summaries include:
nucelophilic substitution reactions* elimination reactions* free radical substitution reactions* electrophilic addition reactions* oxidation reactions* reduction reactions* electrophilic substitution reactions* reactions of phenols* carbon-carbon formation reactions* reactions of carboxylic acids* reactions of acyl chlorides* polymerisation reactions* hydrolysis reactions* amine synthesis reactions*
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
3 structured lessons covering topics from AS Chemistry haloalkanes from the OCR Specification
Lesson 1: Haloalkanes and their Reactions (part 1)
LO1. To define and use the term nucleophile
LO2. To outline the mechanism for nucleophilic substitution of haloalkanes
Lesson 2: Haloalkanes and their Reactions (part 2)
LO1. To explain the trend in the rates of hydrolysis of primary haloalkanes in terms of the bond enthalpies of carbon-halogen bonds
LO2. To describe how the rate of hydrolysis of haloalkanes can be determined by experiment using water, ethanol and silver nitrate solution
Lesson 3: Haloalkanes and the environment
LO1. To know how halogen radicals are produced from chlorofluorocarbons (CFCs) by the action of UV radiation
LO2. To construct equations for the production of halogen radicals from CFCs
LO3. To construct equations for the catalysed breakdown of ozone by Cl. and other radicals (NO.)
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
3 Full Lesson Bundle on Buffer Solutions. This bundle covers the AQA A Level Chemistry specification. Please review the learning objectives below.
**Part 1: Explaining How Buffer Solutions Work
To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base
To describe how a buffer solution is formed using weak acids, salts and weak bases
To explain qualitatively the action of acidic and basic buffers
**Part 2: Buffer Solution Calculations (Part 1)
To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation
To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution
Part 3: Buffer Solution Calculations (Part 2)
To calculate changes in pH when a small amount of acid or alkali is added to an acidic buffer solution
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
3 Full Lesson Bundle covering Analytical Techniques (mass spectrometry, IR spectroscopy and combined techniques in organic chemistry) . These lessons follow the OCR specification
Lesson 1: Mass Spectrometry in Organic Chemistry
**1) Use a mass spectrum of an organic compound to identify the molecular ion peak and hence to determine molecular mass
**2)Perform analysis of fragmentation peaks in a mass spectrum to identify parts of structures
Lesson 2: IR Spectroscopy
**1) To understand the absorption of infrared radiation by atmospheric gases containing C=O, O-H and C-H bonds, their suspected link to global warming and resulting changes to energy uses
**2)To understand how infrared spectroscopy works
**3)To understand the application of infrared spectroscopy
**4) To interpret IR spectra
Lesson 3: Combined Spectroscopic Techniques
**1)To apply combined spectroscopic techniques (IR spectroscopy, mass spectrometry and elemental analysis) to identify the structures of unknown compounds
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
3 fully planned lessons (including starter questions and main work tasks) covering the AS Chemistry chapter on Redox Reactions;
Lesson 1: Oxidation States
Lesson 2: Half Equations
Lesson 3: Forming Redox Equations
By the end of lesson 1 students will:
Recall the rules for oxidation states of uncombined elements and elements in compounds
Determine the oxidation states of elements in a redox reaction
Identify what substance has been reduced or oxidised in a redox reaction
By the end of lesson 2 students will:
Understand what a half equation is
Explain what a redox equation is
Construct half equations from redox equations
By the end of lesson 3 students will:
Identify what substance has been reduced or oxidised in a redox reaction
Construct balanced half equations by adding H+ and H2O
Construct full ionic redox equations from half equations
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
3 structured lessons covering topics from AS Chemistry Alcohols from the OCR Specification
Lesson 1: Properties of Alcohols
LO1: To identify and explain the intermolecular forces that are present in alcohol molecules
LO2: To explain the water solubility of alcohols, their low volatility and their trend in boiling points
LO3: To classify alcohols as primary, secondary or tertiary alcohols
Lesson 2: Oxidation of Alcohols
LO1: To know that alcohols can undergo combustion reactions in the presence of oxygen
LO2:To know alcohols can be oxidised by an oxidising agent called acidified potassium dichromate
LO3:To know the products and reaction conditions for the oxidation of primary alcohols to aldehydes and carboxylic acids
LO4:To know the products and reaction conditions for the oxidation of secondary alcohols to ketones
Lesson 3: Other Reactions of Alcohols
LO1: To know the elimination of H2O from alcohols in the presence of an acid catalyst and heat to form alkenes
LO2: To know the substitution of alcohols with halide ions in the presence of acid to form haloalkanes
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
3 Full Lesson Bundle on Carbon-13 and Proton NMR Spectroscopy. Suitable for the OCR A Level Chemistry specification. Please review the learning objectives below.
Lesson 1: Carbon-13 NMR Spectroscopy
To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about:
i) The number of carbon environments in the molecule
ii) The different types of carbon environment present from chemical shift values
iii) Possible structures for the molecule
Lesson 2: Proton NMR Spectroscopy (Part 1)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The number of proton environments in the molecule
ii) The different types of proton environment present from chemical shift values
Lesson 3: Proton NMR Spectroscopy (Part 2)
To analyse proton NMR spectra of an organic molecule to make predictions about:
i) The different types of proton environment present from chemical shift values
ii) The relative numbers of each type of proton present from the relative peak areas using integration traces or ratio numbers when required
iii) The number of non-equivalent protons adjacent to a given proton from the spin-spin splitting pattern, using the n+1 rule
iv) Possible structures for the molecule
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
3 Full Lesson Bundle (including a FREE revision lesson!) on Buffer Solutions. This bundle covers the OCR A Level Chemistry specification. Please review the learning objectives below.
**Part 1: Explaining How Buffer Solutions Work
To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base
To describe how a buffer solution is formed using weak acids, salts and strong alkalis
To explain the role of the conjugate acid-base pair in an acid buffer solution such as how the blood pH is controlled by the carbonic acid–hydrogencarbonate buffer system
**Part 2: Buffer Solution Calculations (Part 1)
To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation
To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution
**Part 3: Buffer Solution Calculations (Part 2)
To calculate the pH of a weak acid-strong alkali buffer solution
To calculate equilibrium concentrations, moles or mass of the components of a weak acid- strong alkali buffer solution
Part 4: BONUS Revision Lesson
To review how to calculate the pH of a buffer solution containing a weak acid and a strong alkali
To review how to calculate the pH of a buffer solution containing a weak acid and the salt of the weak acid
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
4 well structured chemistry lessons covering topics in Alkenes (Year 12) suitable for the OCR specification
NOTE: If you are also looking for a lesson on stereoisomerism in alkenes , this can also be found in my shop under the title ‘Isomers’
Lesson 1: The Properties of Alkenes
To know the general formula of alkenes
To explain the shape and bond angle around each carbon atom of a C=C bond
To describe how π and σ bonds are formed in alkenes
Lesson 2: Addition Reactions of Alkenes
To know what an electrophile is
To describe what an electrophilic addition reaction is
To outline the mechanism for electrophilic addition
Lesson 3: Addition Polymerisation
To know the repeat unit of an addition polymer deduced from a polymer
To identify the monomer that would produce a given section of an addition polymer
To construct repeating units based on provided monomers
Lesson 4: Dealing with Polymer Waste
To understand the benefits for sustainability of processing waste polymers by:
i) Combustion for energy production
ii) Use as an organic feedstock for the production of plastics and other organic chemicals
iii) Removal of toxic waste products such as HCl
To understand the benefits to the environment of development of biodegradable and photodegradable polymers
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
4 structured lessons covering topics from AS Chemistry Alkanes from the AQA Specification
Lesson 1: Fractional Distillation of Crude Oil
Describe what crude oil contains and to understand its uses
Explain how crude oil is separated into useful fractions on an industrial scale
Explain how crude oil is separated into useful fractions on an industrial scale
Lesson 2: Cracking of Alkanes
To describe what cracking is and its economic benefits
To explain what thermal and catalytic cracking
To compare and evaluate the conditions for and the products of thermal and catalytic cracking
Lesson 3: Combustion of Alkanes
To understand why alkanes are good fuels
To recall the complete and incomplete combustions equations (both word and symbol) of alkanes
To explain the environmental problems associated with pollutant products when alkanes are used as fuels
To explain the use of catalytic convertors and processes such as flue gas desulfurisation to remove gaseous pollutants produced during alkane combustion
Lesson 4: Free Radical Substitution of Alkanes
1)To know what a free radical is
2) To describe the reaction mechanism for the free-radical substitution of alkanes including initiation, propagation and termination
3) To analyse the limitations of radical substitution in synthesis by formation of a mixture of organic products
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above