Hero image

Teach Science & Beyond

Average Rating4.88
(based on 24 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

114k+Views

75k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
OCR Redox Titrations (Part 1)
TeachScienceBeyondTeachScienceBeyond

OCR Redox Titrations (Part 1)

(0)
A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations **By the end of this lesson KS5 students should be able to: **LO1: To understand what a redox titration is. LO2: To describe the practical techniques and procedures used to carry out redox titrations involving Fe2+ /MnO4- LO3: To calculate structured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
OCR Redox Titrations (Part 2)
TeachScienceBeyondTeachScienceBeyond

OCR Redox Titrations (Part 2)

(0)
A structured KS5 lesson (Part 2 of 2) including starter activity, AfL work tasks and practice questions on Redox Titrations **By the end of this lesson KS5 students should be able to: **LO1: To describe the practical techniques and procedures used to carry out redox titrations for I2/S2O32- LO2: To calculate structured titration questions based on experimental results of redox titrations involving I2/S2O32- and non familiar redox systems LO3: To calculate non-structured titration questions based on experimental results of I2/S2O32- The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Limitations of Cell Potentials
TeachScienceBeyondTeachScienceBeyond

Limitations of Cell Potentials

(0)
A structured KS5 lesson including starter activity and AfL work tasks on Limitations of Cell Potentials By the end of this lesson KS5 students should be able to: LO1. To understand the limitations of predicting the feasibility of a reaction using cell potentials due to kinetics and non-standard conditions LO2. To explain why electrochemical cells may not work based on the limitations of using cell potentials The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Enthalpy Changes
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Enthalpy Changes

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Enthalpy Changes By the end of this lesson KS5 students should be able to: LO1: To know what standard conditions are LO2: To understand the terms enthalpy change of combustion, neutralisation and formation LO3: To construct balanced symbol equations based on the terms enthalpy change of combustion, neutralisation and formation. The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Lattice Enthalpy
TeachScienceBeyondTeachScienceBeyond

Lattice Enthalpy

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Lattice Enthalpy. Suitable for the OCR Specification By the end of this lesson KS5 students should be able to: To explain the term lattice enthalpy 2.To understand the factors that determine the size of lattice enthalpy 3.To explain the terms standard enthalpy change of formation and first ionisation energy The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Group 2 Elements
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Group 2 Elements

(0)
A structured KS5 lesson (Part 1 of 2) including starter activity, AfL work tasks and practice questions with answers on Group 2 Elements By the end of this lesson KS5 students should be able to: Know group 2 elements lose their outer shell s2 electrons to form +2 ions State and explain the trend in first and second ionisation energies of group 2 elements and how this links to their relative reactivities with oxygen, water and dilute acids Construct half equations of redox reactions of group 2 elements with oxygen, water and dilute acids and to identify what species have been oxidised and reduced using oxidation numbers Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
OCR Redox Reactions 1 (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

OCR Redox Reactions 1 (A Level Chemistry)

(0)
A structured KS5 lesson (lesson 1 of 2) including starter activity, AfL work tasks and practice questions with answers on Redox Reactions. Suitable for Year 13 OCR A Level Chemistry **By the end of this lesson KS5 students should be able to: LO1: To identify the oxidation numbers of elements in ions and compounds LO2: To construct half-equations from redox equations LO3: To explain and use the terms oxidising agent and reducing agent The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Gibbs Free Energy (Part 1)
TeachScienceBeyondTeachScienceBeyond

Gibbs Free Energy (Part 1)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on Gibbs Free Energy (Part 1) By the end of this lesson KS5 students should be able: To explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system To recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T To calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
OCR Redox Reactions 2 (A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

OCR Redox Reactions 2 (A Level Chemistry)

(0)
A structured KS5 lesson (lesson 2 of 2) including starter activity, AfL work tasks and practice questions with answers on Redox Reactions. Suitable for Year 13 OCR A-Level Chemistry **By the end of this lesson KS5 students should be able to: LO1: To understand that the overall increase in oxidation number will equal the overall decrease in oxidation number LO2: To construct balanced half equations and overall redox equations from reactions in acidic conditions LO3: To construct balanced half equations and overall redox equations from reactions in alkaline conditions (stretch & challenge) The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Enthalpy Change of Hydration & Solution
TeachScienceBeyondTeachScienceBeyond

Enthalpy Change of Hydration & Solution

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Enthalpy Change of Hydration & Soluton By the end of this lesson KS5 students should be able to: To define the terms enthalpy change of solution and hydration To construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid To qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Born-Haber Cycles
TeachScienceBeyondTeachScienceBeyond

Born-Haber Cycles

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Born Haber Cycles By the end of this lesson KS5 students should be able to: 1.To construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values 2.To calculate the value for lattice enthalpy from Born Haber Cycle diagrams 3.To calculate other enthalpy change values from Born Haber Cycle diagrams All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Entropy
TeachScienceBeyondTeachScienceBeyond

Entropy

(0)
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on Entropy By the end of this lesson KS5 students should be able to: To know that entropy is a measure of the dispersal of energy in a system, which is greater the more disordered a system To explain the difference in entropy of solids, liquids and gases To calculate the entropy change of a reactant based on the entropies provided for the reactants and products Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Group 2 Compounds
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Group 2 Compounds

(0)
A structured KS5 lesson (Part 2 of 2) including starter activity, AfL work tasks and practice questions with answers on Group 2 Compounds By the end of this lesson KS5 students should be able to: To know the reaction between group 2 metal oxides and water To state the trend in solubility and alkalinity of group 2 metal hydroxides To describe the uses of some group 2 compounds including their equations The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Chemistry: Metal Oxides
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Metal Oxides

(0)
A well structured lesson including starter activity, AfL work tasks on metal oxides. Suitable for AQA GCSE Chemistry or Combined Science By the end of this lesson KS4 students should be able to: Identity that metals react with oxygen to form metal oxides Explain reduction and oxidation by loss or gain of oxygen Identify metal oxides as bases or alkalis The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Chemistry: Reactivity Series and Metal Extraction
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Reactivity Series and Metal Extraction

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks on the reactivity series and metal extraction. Suitable for AQA GCSE Chemistry and Combined Science (higher and foundation) By the end of this lesson KS4 students should be able to: Deduce an order of reactivity of metals based on experimental results Explain reduction and oxidation by loss or gain of oxygen Explain how the reactivity is related to the tendency of the metal to form its positive ion The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Chemistry: Atomic Structure
TeachScienceBeyondTeachScienceBeyond

GCSE Chemistry: Atomic Structure

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks on atomic structure. Suitable for AQA GCSE Chemistry and Combined Science (Higher and foundation) By the end of this lesson KS4 students should be able to: Describe the atomic structure of an atom Construct a diagram of the atomic structure of an atom Calculate the number of sub-atomic particles in different elements The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AQA GCSE Biology: Inheritance, Variation and Evolution
TeachScienceBeyondTeachScienceBeyond

AQA GCSE Biology: Inheritance, Variation and Evolution

(0)
Fun Revision Quiz on AQA GCSE Biology: Inheritance, Variation and Evolution. Students will be tested using a series of questions on the following topics: Antibiotic Resistance The Theory of Evolution Genetic Engineering Variation Classification and Evolutionary Trees Asexual and Sexual Reproduction Mitosis and Meiosis DNA and Genes Genetic Crosses This quiz can be completed using A,B,C cards or on mini whiteboards Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Energy (OCR A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Energy (OCR A Level Chemistry)

6 Resources
6 Full Lesson Bundle covering the first 6 chapters in the OCR A Level Chemistry Chapter on Energy Lesson 1: Lattice Enthalpy **By the end of the lesson students will: Explain the term lattice enthalpy Understand the factors that determine the size of lattice enthalpy Explain the terms standard enthalpy change of formation and first ionisation energy** Lesson 2: Born-Haber Cycles **By the end of the lesson students will: **1. Construct Born Haber Cycle diagrams for ionic compounds from enthalpy change values **2. Calculate the value for lattice enthalpy from Born Haber Cycle diagrams **3. Calculate other enthalpy change values from Born Haber Cycle diagrams Lesson 3: Enthalpy Changes of Solution & Hydration **By the end of the lesson students will: **1. Define the terms enthalpy change of solution and hydration **2. Construct enthalpy cycles using the enthalpy change of solution of a simple ionic solid 3. Qualitatively explain the effect of ionic charge and ionic radius on the exothermic value of lattice enthalpy and enthalpy change of hydration Lesson 4: Entropy **By the end of lesson students will: **1. Know that entropy is a measure of the dispersal of energy in a system, which is greater the more disordered a system **2. Explain the difference in entropy of solids, liquids and gases **3. Calculate the entropy change of a reactant based on the entropies provided for the reactants and products Lesson 5: Gibbs Free Energy (Part 1) **By the end of the lesson students will: **1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system **2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or T **3.Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation Lesson 6: Gibbs Free Energy (Part 2) By the end of the lessons students will: 1. Explain that the feasibility of a process depends upon ΔG being negative which in turn depends upon ΔS, ΔH and the T of the system 2. Recall the Gibbs’ Equation and calculate ΔG, ΔH, ΔS or 3. Calculate ΔG, ΔH, ΔS or T using the Gibbs’ Equation The teacher will be able to check students have met these learning objectives through starter activities, discussion questions, mini AfL tasks and practice questions for students to complete Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Naming  Aromatic Compounds (Aromatic Chemistry)
TeachScienceBeyondTeachScienceBeyond

Naming Aromatic Compounds (Aromatic Chemistry)

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on naming and drawing aromatic compounds **By the end of this lesson KS5 students should be able to: **1. State the IUPAC name of substituted aromatic compounds **2. Construct the structure of aromatic compounds based on their IUPAC names **3. Analyse the correct numbering system for di and trisubstituted aromatic compounds The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Acids & Bases (AQA A Level Chemistry)
TeachScienceBeyondTeachScienceBeyond

Acids & Bases (AQA A Level Chemistry)

10 Resources
10 Full Lesson Bundle on Acids & Bases. This bundle covers the AQA A Level Chemistry specification. Please review the learning objectives below. Lesson 1: Bronsted-Lowry Acid and Bases To describe the difference between a BrØnsted Lowry acid and base To identify conjugate acid-base pairs To explain the difference between monobasic, dibasic and tribasic acids To understand the role of H+ in the reactions of acids with metals and bases (including carbonates, metal oxides and alkalis), using ionic equations Lesson 2: Strong Acids & The pH Scale To calculate the pH of a strong acid To convert between pH and [H+(aq)] To apply the relationship between pH and [H+(aq)] to work out pH changes after dilution **Lesson 3 - The Acid Dissociation Constant ** To understand the acid dissociation constant, Ka, as the extent of acid dissociation To know the relationship between Ka and pKa To convert between Ka and pKa **Lesson 4- pH of weak acids ** To recall the expression of pH for weak monobasic acids To calculate the pH of weak monobasic acids using approximations **Lesson 5 - The ionic product of water ** To recall the expression for the ionic product of water, Kw (ionisation of water) To calculate the pH of strong bases using Kw To apply the principles for Kc, Kp to Kw Lesson 6-8 - Buffer Solutions (3 part lesson) **Part 1: Explaining How Buffer Solutions Work To know a buffer solution is a system that minimises pH changes on addition of small amounts of an acid or base To describe how a buffer solution is formed using weak acids, salts and weak bases To explain qualitatively the action of acidic and basic buffers **Part 2: Buffer Solution Calculations (Part 1) To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution **Part 3: Buffer Solution Calculations (Part 2) To calculate changes in pH when a small amount of acid or alkali is added to an acidic buffer solution Lesson 9- Neutralisation & Titration Curves To interpret titration curves of strong and weak acids and strong and weak bases To construct titration curve diagrams of strong and weak acids and strong and weak bases **Lesson 10- pH indicators & Titration Curves ** To explain indicator colour changes in terms of equilibrium shift between the HA and A- forms of the indicator To explain the choice of suitable indicators given the pH range of the indicator To describe an experiment for creating a titration curve Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above