Presentation to help students get to grips with friction and the need for lubricants - includes practice questions. Suitable for higher KS3 students also.
Developing: Recall the definition friction and what direction is acts in.
Secure: Explain how friction works and what causes it.
Exceeding: Explore ways of reducing Friction.
Lesson taking a deeper look at thermal conduction, could be used for higher KS3 classes. Includes conductors and insulators and examines why conductors are colder to the touch than insulators.
Developing: Draw particle diagrams to display the transfer of heat energy through conduction.
Securing: Assess the different qualities of thermal conductors and insulators.
Exceeding: Explain with reference to sub atomic particles, why metals are the best thermal conductors.
Lesson building on students prior basic knowledge of refraction and linking to light waves. Looks at various examples, paying specific attention to dispersion - includes practice questions.
Ideal for AQA GCSE (9-1) P6, Cambridge iGCSE P7 and more.
Developing: Describe an experiment to demonstrate the refraction of light.
Securing: Recall and use the definition of refractive index n in terms of speed.
Exceeding: Give a qualitative account of the dispersion of light by a glass prism.
Presentation to help students get to grips with calculating speed and acceleration, also the difference between speed and velocity - contains practice questions.
Developing: Determine the speed of objects using the following formula: Speed = Distance/Time
Securing: Recall the definitions of speed, velocity and acceleration.
Exceeding: Calculate the average acceleration.
Presentation to support a ticker tape investigation of motion - contains practice questions, practical instructions/analysis/graph drawing and homework - suitable for higher KS3 classes also.
Developing: Conduct the experiment safely
Secure: Measure and record accurate results
Exceeding: Analyse the motion on the ticker tape
Presentation to help students get to grips with motion graphs - contains practice questions and flash animations.
Developing: Recognise from the shape of a speed-time graph when a body is – at rest / moving with constant speed / accelerating / decelerating.
Secure: Calculate speed from the gradient of a speed-time graph.
Exceeding: Demonstrate understanding that acceleration and deceleration are related to changing speed.
Lesson introducing and explaining Boyle’s Law with reference to kinetic theory and the Kelvin scale - including practice questions for students.
Ideal for Cambridge iGCSE P3 and more.
Developing: Recall that a gas is made up of tiny, moving particles.
Secure: Recall and use the equation pV = constant for a fixed mass of gas at constant temperature.
Exceeding: Describe qualitatively, in terms of molecules, the effect on the pressure of a gas of a change of volume at a constant temperature.
Lessons designed to build on prior knowledge of nuclear radiation. Covers Alpha & Beta decay and half-life - includes practice questions for students.
Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more
Lesson 1/2
Developing: Describe the composition of different nuclei in terms of protons and neutrons.
Securing: State that during alpha or beta decay the nucleus changes to that of a different element.
Exceeding: Use equations involving nuclide notation to represent changes in the composition of the nucleus when particles are emitted.
Lesson 2/2
Developing: Recall that nuclear decay is spontaneous and random.
Securing: Describe what is meant by half life, in terms of number of nuclei and activity.
Exceeding: Calculate half-life from data or decay curves from which background radiation has not been subtracted.
Lesson introducing and explaining calculating electrical energy & power. Contains worked examples - includes practice questions for students.
Ideal for AQA GCSE (9-1) P2, Cambridge iGCSE P8 and more
Developing: Recall that electric circuits transfer energy from the battery or power source to the circuit components then into the surroundings.
Securing: Recall and use the equations P = IV and E = IVt
Exceeding: Apply knowledge of electrical work to assess the efficiency of electrical devices.
Lesson to explore forces in balance, linking to terminal velocity - includes practice questions. Suitable for a higher KS3 class also.
Developing: Recognise that if there is no resultant force on a body it either remains at rest or continues at constant speed in a straight line.
Secure: Recognise air resistance as a form of friction.
Exceeding: Explain, in terms of the forces acting, how the acceleration of an object experiencing air resistance varies during its fall.
Presentation to help students get to grips with prefixes and scientific notation - contains practice questions - also suitable for higher KS3 classes.
Developing: Recall the 8 basic prefixes.
Secure: Most students will be able to use the 8 basic prefixes in the keywords and explain what they mean with an example.
Exceeding: Apply scientific notation and convert fractions/decimals into standard
form.
Lesson introducing the use of forces and turning effects like levers, including moments - includes practice questions for students. Also suitable to higher KS3 classes.
Ideal for Cambridge iGCSE P3
Lesson 1/2
Developing: Describe the moment of a force as a measure of its turning effect and give everyday examples.
Secure: Understand that increasing force or distance from the pivot increases the moment of a force.
Exceeding: Recognise that, when there is no resultant force and no resultant turning effect, a system is in equilibrium.
Lesson 2/2
Developing: Calculate clockwise and anti-clockwise moments using the formula: moment = force x perpendicular distance from pivot
Secure: Apply the principle of moments to different situations.
Exceeding: Apply the principle of moments to the balancing of a beam or pivot.
Series of lessons designed to give students a comprehensive understanding of radioactivity and radioactive decay.
Ideal for AQA GCSE (9-1) P4, Cambridge iGCSE P11 and more
Lesson designed to build on students knowledge of current and charge. Introduces electromotive force (e.m.f.), explains rules associated with voltage in series and parallel circuits - includes practice questions for students.
Ideal for AQA GCSE (9-1) P2, Cambridge iGCSE P8 and more
Developing: State that the potential difference (p.d.) across a circuit component is measured in volts and recall the definition of electromotive force (e.m.f.).
Securing: State that the e.m.f. of an electrical source of energy us measured in volts and recall that 1V is equivalent to 1 J/C.
Exceeding: Recall and apply the fact that from one battery terminal to the other, the sum of the potential differences (p.ds) across the components is equal to the p.d. across the battery.
Lesson bringing together students knowledge of energy stores and generation, looking at energy resources and their environmental impacts. Suitable for higher KS3 classes.
Ideal for AQA GCSE (9-1) P1, Cambridge iGCSE P5 and more.
Developing: Recall that there are renewable and non-renewable energy resources and give examples of these types of energy resources.
Secure: Assess the relative reliability, cost scale of different energy resources
Lesson introducing the different types of energy and the concept of conservation of energy. Includes practice question and treasure hunt activity and pictionary cards. Suitable for higher KS3 class also.
Ideal for AQA GCSE (9-1) P1, Cambridge iGCSE P5 and more.
Developing: To understand key ideas and key terms relating to Energy.
Secure: To describe the 9 forms of Energy.
Exceeding: To describe and explain how Energy is transferred from one form to another.
Lesson introducing and explaining efficiency and how to calculate it. Also shows how to draw Sankey diagrams. Suitable for higher KS3 classes also - includes practice exam question.
Ideal for AQA GCSE (9-1) P1, Cambridge iGCSE P5 and more
Developing: To understand not all energy is transferred from one form directly to another
Secure: To be able to calculate efficiency from given data.
Exceeding: To be able to create a Sankey diagram from given data and calculate efficiency from it.