By the end of the lesson learners will be able to:
State what happens when sound reaches an object.
Describe how echoes describe the object it has reflected from.
Explain why echoes are used by pregnant women and dolphins.
By the end of the lesson learners will be able to:
Identify what’s meant by a radioactive atom.
Describe how a GM tube measures radiation.
Explain why radioactive sources become less dangerous as time passes.
A comprehensive lesson that teaches students the difference between renewable and non-renewable energy resources.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
By the end of the lesson students should be able to:
Success criteria:
Define renewable and non-renewable energy sources and list examples
Describe the difference between renewable and non-renewable energy resources
Explain how electricity is generated in a power station
Learning objective: Investigate the differences in types of energy resources and evaluate the importance of some over others.
Powerpoint contains 18 slides.
By the end of the lesson learners will be able to:
Identify the 8 energy stores.
Describe how energy can be transferred.
Justify the type of energy transfer within a system.
By the end of the lesson learners will be able to:
Identify thinking and braking distances.
Describe how to calculate stopping distance.
Explain why the braking and thinking distances can change.
By the end of the lesson learners will be able to:
Identify the effect of force.
Describe how to calculate force.
Explain why mass and acceleration affects force.
By the end of the lesson learners will be able to:
State what’s produced when an unstable atom breaks down.
Describe what is meant by half-life.
Explain why atoms with a high radioactivity will have a short half-life.
By the end of the lesson learners should be able to:
State the formula for speed.
Describe what’s shown in a distance-time graph
Explain why the gradient is the same as the speed on a distance-time graph.
Includes a simulation where you can use your webcam / student’s webcams to model distance time graphs based on movement toward / away from the screen.
By the end of the lesson learners will be able to:
Identify acceleration, constant velocity and deceleration on a velocity-time graph.
Describe how to calculate distance travelled using a velocity-time graph.
Compare the movement of two objects on a velocity-time graph.
By the end of the lesson learners should be able to:
State the equation for acceleration
Describe how to measure the acceleration of an object.
Explain why a change in acceleration indicates a change in direction
By the end of the lesson learners will be able to:
State the law of conservation of energy.
Describe what’s meant by energy efficiency.
Create Sankey diagrams.
By the end of the lesson learners should be able to:
Identify different types of waves.
Describe how to measure properties of waves.
Compare constructive and destructive interference.
By the end of the lesson learners should be able to:
Identify action and reaction forces.
Describe Newton’s third law.
Explain why people might experience pain when placing a force on an object.
A resource containing a comprehensive powerpoint slideshow that will guide learners through gravity and electrostatic non contact forces.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
By the end of the lesson students should be able to:
Learning objective: Develop an understanding of how forces can act at a distance and explain why these forces are present.
Success criteria:
-Identify non-contact forces.
-Describe how objects react to some non-contact forces.
-Explain why non-contact forces are needed for our daily lives.
This lesson contains 17 slides
Produced to be used when delivering the activate 1 pathway.
A resource containing 2 powerpoint slides for 2 lessons and a worksheet for applying Hooke’s law and analysing data.
I run the resource as an initial practical for investigating Hooke’s law and the second lesson to further solidify theory.
Tasks are differentiated to suit the needs of each learner.
Progress checks take place after each success criteria to measure the progress of learners.
For the practical lesson:
By the end of the lesson students should be able to:
Learning objective: Investigate the effects of forces on the extension of a spring.
Success criteria:
-Identify independent and dependent variables.
-Describe how to write a method concerning spring extension.
-Explain why repeatability and reliability are important factors within experiments.
This lesson contains 17 slides.
For the theory lesson:
By the end of the lesson students should be able to:
Learning objective: To analyse the results and draw conclusions between the spring practical and Hooke’s law theory.
Success criteria:
Identify the forces needed to extend and compress a spring.
Describe Hooke’s law.
Explain why the pattern for Hooke’s law does not remain indefinitely.
This lesson contains 17 slides.
The worksheet contains 2 pages.
By the end of the lesson learners should be able to:
Identify the parts that make up the ear.
Describe how the ear manipulates sound.
Explain why people can experience hearing loss / damage.
By the end of the lesson learners should be able to:
Identify the cause of sound waves.
Describe how amplitude, loudness, frequency and pitch are connected.
Explain why people can’t talk to another in space.
A comprehension lesson that teaches students about the colours of light and how the primary colours contribute towards how we perceive objects around us. How objects reflect or absorb light colours. How filters influence light.
Progress checks are available following each success criteria
Tasks are differentiated to suit the needs of each learner.
Learning objective: Justify how filters can affect how we see an object.
By the end of the lesson learners should be able to:
Success criteria
Explain what happens when light passes through a prism
describe how primary colours add to make secondary colours
explain how filters and coloured materials subtract light.
Powerpoint contains 25 slides.