Hero image

HB science resources

Average Rating3.38
(based on 30 reviews)

A Science teacher since 2016 creating and sharing resources he uses with his own classes.

566Uploads

95k+Views

50k+Downloads

A Science teacher since 2016 creating and sharing resources he uses with his own classes.
Uses of Radiation
hbscienceresourceshbscienceresources

Uses of Radiation

(0)
By the end of the lesson learners will be able to: Identify the uses of alpha, beta and gamma radiation. Describe how they are used in real world applications. Explain why the type of radiation is suited for the role it carries out.
Newton's laws
hbscienceresourceshbscienceresources

Newton's laws

(0)
A comprehensive lesson which teaches students Newton’s laws of motion from simple separate scenarios. Lesson is tailored towards the AQA A-level physics specification - Mechanics Learning objective: I can apply Newton’s laws to scenarios. By the end of the lesson learners should be able to: Success criteria: SC1: Describe how Newton’s first law applies to objects in motion. SC2: Explain why mass affects an object’s acceleration. SC3: Evaluate why a reaction force is present. Contains past paper questions that target this topic, some questions require knowledge from prior lessons. There is also a guide attached with written walkthroughs of how to reach the final answer, even for those tricky 1 mark questions. Powerpoint contains 27 slides and 7 past paper questions.
Projectile Motion and equations of motion
hbscienceresourceshbscienceresources

Projectile Motion and equations of motion

(0)
A comprehensive lesson which teaches students how to read motion graphs, calculate horizontal and vertical motion in projectiles using SUVAT equations and explain the effect of drag on projectiles leading to terminal velocity. Lesson is tailored towards the AQA A-level physics specification - Mechanics Tasks are differentiated to suit the needs of each learner. Learning objective: Use SUVAT equations to calculate projectile motion. By the end of the lesson learners should be able to: Success criteria: SC1: I describe components of displacement-time and velocity-time graphs. SC2: I can use and manipulate SUVAT equations. SC3: I can calculate components of projectile motion. Contains past paper questions that target this topic, some questions require knowledge from prior lessons. There is also a guide attached with written walkthroughs of how to reach the final answer, even for those tricky 1 mark questions. Powerpoint contains 17 slides and 13 past paper questions.
Moments A level physics Mechanics
hbscienceresourceshbscienceresources

Moments A level physics Mechanics

(0)
A comprehensive lesson which teaches students how to calculate and justify if a system is in equilibrium in regards to turning forces, calculate the moment at an angle, describe how the centre of mass and centre of gravity of an object affect its stability and apply these to past paper calculations. Lesson is tailored towards the AQA A-level physics specification - Mechanics Tasks are differentiated to suit the needs of each learner. Learning objective: Calculate moments and apply this idea to object stability. By the end of the lesson learners should be able to: Success criteria: SC1: Describe how to calculate moments. SC2: Explain how to increase object stability. SC3: Compare the centre of mass and centre of gravity. Contains past paper questions that target this topic, some questions require knowledge from prior lessons. There is also a guide attached with written walkthroughs of how to reach the final answer, even for those tricky 1 mark questions. Powerpoint contains 13 slides and 23 past paper questions.
Resolving Vectors
hbscienceresourceshbscienceresources

Resolving Vectors

(0)
A comprehensive lesson which teaches students how to resolve vector diagrams via: pythagoras, trigonometry and scale drawings. Lesson is tailored towards the AQA A-level physics specification - Mechanics Tasks are differentiated to suit the needs of each learner. Learning objective: Learning objective: Apply trigonometry and Pythagoras to resolve vectors By the end of the lesson learners should be able to: Success criteria: SC1: Compare scalars and vectors. SC2: Use pythagoras and trigonometry in order to solve net vectors including inclined planes. SC3: Use scale diagrams to resolve net vectors when coplanar forces are in equilibrium. Contains past paper questions that target this topic, some questions require knowledge from prior lessons. There is also a guide attached with written walkthroughs of how to reach the final answer, even for those tricky 1 mark questions. Powerpoint contains 14 slides and 14 past paper questions.
Work energy and power mechanics
hbscienceresourceshbscienceresources

Work energy and power mechanics

(0)
A comprehensive lesson which teaches students how to calculate work, relate this to power, calculate the efficiency of work due to angles and energy transfers. Lesson is tailored towards the AQA A-level physics specification - Mechanics Learning objective: To apply understanding of energy to motion and how angles affect the efficiency of work. By the end of the lesson learners should be able to: Success criteria: SC1: Describe what is meant by work and power. SC2: Calculate the efficiency of work when angles are involved. SC3: Use the conservation of energy to calculate values from the spring potential, gravitational potential and kinetic energy equations. Contains past paper questions that target this topic, some questions require knowledge from prior lessons. There is also a guide attached with written walkthroughs of how to reach the final answer, even for those tricky 1 mark questions. Powerpoint contains 20 slides and 8 past paper questions.
Linear Momentum and Impulse
hbscienceresourceshbscienceresources

Linear Momentum and Impulse

(0)
A comprehensive lesson which teaches students conservation of momentum, elastic and inelastic collisions, impulse graphs and how these link to change in momentum. Lesson is tailored towards the AQA A-level physics specification - Mechanics Learning objective: Calculate momentum and apply this to justify force changes during collisions. By the end of the lesson learners should be able to: Success criteria: SC1: Calculate momentum. SC2: Compare elastic and inelastic collisions. SC3: Explain why impulse graphs show force outputs. Contains past paper questions that target this topic, some questions require knowledge from prior lessons. There is also a guide attached with written walkthroughs of how to reach the final answer, even for those tricky 1 mark questions. Powerpoint contains 18 slides and 13 past paper questions.
Measurement uncertainties and error
hbscienceresourceshbscienceresources

Measurement uncertainties and error

(0)
A comprehensive lesson which teaches students about errors, uncertainties and how these can be represented as error bars. This lesson was designed to fit needs of the AQA a-level physics course Tasks are differentiated to suit the needs of each learner. Learning objective: Understand and apply the concepts of measurement uncertainties. By the end of the lesson learners should be able to: Success criteria: 1: Identify random and systematic errors. 2: Calculate different types of uncertainties. 3: Represent uncertainties on graphs. Powerpoint contains 29 slides. Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Power dissipation and Conservation of Charge A level physics
hbscienceresourceshbscienceresources

Power dissipation and Conservation of Charge A level physics

(0)
A comprehensive lesson which teaches students about power and how the equations for power can be derived using other equations furthermore it also applies this to Kirchhoff’s law of conservation of current. This lesson was designed to fit the needs of the AQA a-level physics course - unit 5 electricity. Tasks are differentiated to suit the needs of each learner. Learning objective: To calculate power dissipation by using various equations. By the end of the lesson learners should be able to: Success criteria: SC1: I can describe how to calculate power without using the standard P=IV calculation. SC2: I can justify what is meant by power. SC3: I can Link Kirchhoff’s conservation of charge to power dissipation in branches. Powerpoint contains 7 slides. Contains a series of questions that are supposed to target the entire electricity unit with included success criteria to ensure students give the necessary detail. Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Resistivity and superconductivity A level physics
hbscienceresourceshbscienceresources

Resistivity and superconductivity A level physics

(0)
A comprehensive lesson which teaches students about factors that influence resistance within a wire in terms of area and length as well as superconductivity. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity. Tasks are differentiated to suit the needs of each learner. Learning objective: To justify the components of the resistivity equation and apply it. By the end of the lesson learners should be able to: Success criteria: I can describe resistivity. I can derive the units of resistivity by using the equation. I can explain why superconductivity arises. Powerpoint contains 8 slides and a pack of past paper questions Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Internal Resistance A level physics
hbscienceresourceshbscienceresources

Internal Resistance A level physics

(0)
A comprehensive lesson which teaches students about internal resistance and how this can be measured by measuring the gradient from a current-voltage graph. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity. Tasks are differentiated to suit the needs of each learner. Learning objective: To evaluate the effect of internal resistance in a circuit. By the end of the lesson learners should be able to: Success criteria: I can describe what is meant by internal resistance I can calculate internal resistance I can obtain results for internal resistance from voltage and current readings. Powerpoint contains 9 slides and past paper pack of questions. Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Potential divider / potentiometer a level physics
hbscienceresourceshbscienceresources

Potential divider / potentiometer a level physics

(0)
A comprehensive lesson which teaches students about resistance and how this impacts voltage distribution in a potential divider circuit. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity. Tasks are differentiated to suit the needs of each learner. Learning objective: Explain why a potential divider is used in appliances. By the end of the lesson learners should be able to: Success criteria: I describe how to calculate the total resistance in a variety of circuits. I can explain why a potential divider is used. I can calculate the voltage output using the potential divider equation. Powerpoint contains 24 slides. Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Resistance and Ohm's law A level physics
hbscienceresourceshbscienceresources

Resistance and Ohm's law A level physics

(0)
A comprehensive lesson which teaches students about Ohm’s law and how IV graphs are sketched for fixed resistors, diodes, thermistors, LDRs and filament bulbs. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity. Tasks are differentiated to suit the needs of each learner. Learning objective: To investigate the relationship between current and voltage in different circuit components. By the end of the lesson learners should be able to: Success criteria: I can describe the IV graph trends for filament bulbs, diodes, fixed resistors, thermistors and LDRs I can apply Ohm’s law to identify and then justify why IV graphs might be different. I can apply my knowledge to answer past paper questions. Powerpoint contains 30 slides. Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Section 8 - Astrophysics Revision poster Physics combined IGCSE
hbscienceresourceshbscienceresources

Section 8 - Astrophysics Revision poster Physics combined IGCSE

(0)
A revision poster that includes material needed for section 8 of the edexcel iGCSE combined science double award physics. Section 8 - Astrophysics A blank copy for students to fill in is also included for students to test their knowledge. I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached. Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
Current and Voltage A-level physics
hbscienceresourceshbscienceresources

Current and Voltage A-level physics

(0)
A comprehensive lesson which teaches students about factors that influence electrical current. This lesson was designed to fit needs of the AQA a-level physics course - unit 5 electricity. Tasks are differentiated to suit the needs of each learner. Learning objective: To explain the fundamental concepts of electrical current, potential difference, electromotive force, including their definitions, units of measurement, and relationships to each other. By the end of the lesson learners should be able to: Success criteria: SC1: Define and distinguish between current, potential difference electromotive force SC2: Explain the relationships between current, potential difference and emf. SC3: Derive the P = IV equation from two different equations. Powerpoint contains 44 slides. Contains past paper questions that target this topic, some questions require knowledge from prior lessons.
Section 7 Radioactivity Revision poster Physics combined IGCSE
hbscienceresourceshbscienceresources

Section 7 Radioactivity Revision poster Physics combined IGCSE

(0)
A revision poster that includes material needed for section 7 of the edexcel iGCSE combined science double award physics. Section 7 - Radioactivity A blank copy for students to fill in is also included for students to test their knowledge. I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached. Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
Section 6 Electromagnetism Revision poster Physics combined IGCSE
hbscienceresourceshbscienceresources

Section 6 Electromagnetism Revision poster Physics combined IGCSE

(0)
A revision poster that includes material needed for section 6 of the edexcel iGCSE combined science double award physics. Section 6 Electromagnetism A blank copy for students to fill in is also included for students to test their knowledge. I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached. Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
Section 5 Solids liquids and gases Revision poster Physics combined IGCSE
hbscienceresourceshbscienceresources

Section 5 Solids liquids and gases Revision poster Physics combined IGCSE

(0)
A revision poster that includes material needed for section 5 of the edexcel iGCSE combined science double award physics. Section 5 Solids liquids and gases A blank copy for students to fill in is also included for students to test their knowledge. I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached. Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
Section 4 Energy Revision poster Physics combined IGCSE
hbscienceresourceshbscienceresources

Section 4 Energy Revision poster Physics combined IGCSE

(0)
A revision poster that includes material needed for section 4 of the edexcel iGCSE combined science double award physics. Section 4 - Energy A blank copy for students to fill in is also included for students to test their knowledge. I would recommend to print these in A3 and guide the students through the answers using the completed revision poster attached. Due to the amount of detail needed to squeeze into one poster, the font is small in some sections which might need some further zooming in on presenting devices.
The Generator effect - induced current
hbscienceresourceshbscienceresources

The Generator effect - induced current

(0)
A comprehensive lesson which teaches students about how current can be induced in a wire, the factors that influence the magnitude of this current and how it is used in industry. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Develop an understanding of how electricity can be generated. By the end of the lesson learners should be able to: Success criteria: I can identify how current can be generated in a wire. I can describe factors that influence the current generated. I can evaluate the best way to generate electricity. Powerpoint contains 22 slides. Contains past paper questions that target this topic, some questions require knowledge from prior lessons.