Hero image

HB science resources

Average Rating3.38
(based on 30 reviews)

A Science teacher since 2016 creating and sharing resources he uses with his own classes.

566Uploads

91k+Views

48k+Downloads

A Science teacher since 2016 creating and sharing resources he uses with his own classes.
Acids and Alkalis
hbscienceresourceshbscienceresources

Acids and Alkalis

(0)
By the end of the lesson learners should be able to: State what is meant by an acidic and alkaline solution. Describe how pH and concentration affects the acid / alkali. Explain why a low concentration of a strong acid can be as dangerous as a high concentration of a weaker acid.
Bonding Models
hbscienceresourceshbscienceresources

Bonding Models

(0)
By the end of the lessons learners should be able to: Identify the 4 bonding models. Describe the properties of each bonding model. Compare the features of each bonding model.
Polymers and Fullerenes
hbscienceresourceshbscienceresources

Polymers and Fullerenes

(0)
By the end of the lesson learners should be able to: Identify fullerenes, monomers and polymers. Describe the structure of fullerenes and polymers. Explain the properties of fullerenes and why polymers can have different properties.
Changes of State
hbscienceresourceshbscienceresources

Changes of State

(0)
By the end of this lesson I will be able to: use the particle model to explain changes involving solids, liquids and gases. interpret data about changing states. I will be working scientifically to: interpret my data.
Electronic orbitals, Aufbau principle and Bohr theory
hbscienceresourceshbscienceresources

Electronic orbitals, Aufbau principle and Bohr theory

(0)
A simple to follow resource aimed toward KS5 / A-level students (yrs 17-18) regarding s, p, d and f orbitals, the order in which they filled mentioning their spin and how electrons respond to quanta of energy. By the end of the lesson learners should be able to: Identify the different types of orbitals. Describe the order in which orbitals are filled. Explain why electrons promote to other orbitals.
Group 0 - Noble Gases.
hbscienceresourceshbscienceresources

Group 0 - Noble Gases.

(0)
A comprehensive lesson which teaches students about the noble gases and their chemical properties. There are links to KS4 included where students explain the reasoning for being non-reactive in relation to the electron shells. Learning objective: To explore the trends seen in group 0 and explain their reactivity. By the end of the lesson learners should be able to: Identify Noble gases. Describe the properties of Noble gases. Explain why Noble gases are used for double glazing and Neon Lights. Suitable for KS3 (yrs 11-14) and KS4 (yrs 14-16) Slides are marked. 10 slides are included in the powerpoint.
Group 7 Halogens
hbscienceresourceshbscienceresources

Group 7 Halogens

(0)
By the end of the lesson learners should be able to: Identify halogens. Describe the trend in reactivity in group 7. Explain why halogens can be displaced. Suitable for KS3 (yrs 11-14) and KS4 (yrs 15-16) slides are labelled.
Nitrogen Cycle
hbscienceresourceshbscienceresources

Nitrogen Cycle

(0)
By the end of the lesson learners should be able to: Identify where Nitrogen can be stored. Describe how Nitrogen is used in the body. Explain why farmers encourage the amount of nitrates in their soil.
Water Cycle
hbscienceresourceshbscienceresources

Water Cycle

(0)
By the end of the lesson learners should be able to: Identify the key phases of the water cycle. Describe how water is important for our bodies. Explain why water can be dangerous to drink. Analyse whether water is safe to drink or not.
Preserving biodiversity.
hbscienceresourceshbscienceresources

Preserving biodiversity.

(0)
By the end of the lesson learners should be able to: Identify factors that reduce biodiversity. Describe the effect of deforestation and extensive farming. Describe the effect of reforestation and zoos. Explain why humans are making an effort to preserve biodiversity.
Biodiversity and Eutrophication
hbscienceresourceshbscienceresources

Biodiversity and Eutrophication

(0)
By the end of the lesson learners should be able to: State what’s meant by biodiversity. Describe how biodiversity can be increased / decreased. Describe what non-indigenous / alien species can do to biodiversity. Explain why there is a limit on how much fertiliser a person can buy.
Circuit Devices
hbscienceresourceshbscienceresources

Circuit Devices

(0)
By the end of the lesson learners should be able to: Identify the circuit symbols for: a thermistor and a LDR. Describe how resistance changes in a thermistor and LDR. Explain why both LDRs and thermistors are used.
IV graphs and Ohms law
hbscienceresourceshbscienceresources

IV graphs and Ohms law

(0)
A comprehensive lesson which teaches students about how IV graphs appear for fixed resistors, filament bulbs and diodes. The lesson also delves into the reasoning behind why these trends arise. Progress checks are available following each success criteria Tasks are differentiated to suit the needs of each learner. Learning objective: Use Ohm’s law to justify the trends seen in IV graphs for a fixed resistor, filament bulb and LED. By the end of the lesson learners should be able to: Success criteria: -Identify generally what happens to current as voltage increases. -Describe how to calculate resistance from a voltage-current graph. -Compare how the resistance changes with load in: fixed resistors, filament bulbs and diodes. Powerpoint contains 22 slides and a collection of past paper questions including the marking scheme.
Voltage and Resistance
hbscienceresourceshbscienceresources

Voltage and Resistance

(0)
A comprehensive lesson which teaches students the basics of what is meant by voltage and resistance. Students will be given the opportunity to practice the E = QV and V = IR equations as well as learn how to used a voltmeter in a circuit successfully. By the end of the lesson learners should be able to: State what’s meant by voltage and resistance. Describe how temperature affects resistance. Explain why a high voltage is dangerous. A checkpoint style plenary is used to assess understanding.
Current and Circuits
hbscienceresourceshbscienceresources

Current and Circuits

(0)
By the end of the lesson learners should be able to: Identify circuit symbols. Describe how to measure and calculate current. Explain why ammeters can read a value as minus.
The Atmosphere
hbscienceresourceshbscienceresources

The Atmosphere

(0)
By the end of the lesson learners should be able to: Identify the main components of the early and late atmosphere. Describe how the atmosphere changed over the years. Explain why scientists believe the atmosphere changed in this way.
Reaction Rate Calculations
hbscienceresourceshbscienceresources

Reaction Rate Calculations

(0)
By the end of the lesson learners should be able to: Recall the equation to calculate rate of reaction. Describe how to read a products made / time graph. Explain why the gradient of the line can change because of external factors. E.g. temperature rise.
Endothermic and Exothermic reactions.
hbscienceresourceshbscienceresources

Endothermic and Exothermic reactions.

(0)
By the end of the lesson learners should be able to: State what’s meant by an exothermic reaction. State what’s meant by an endothermic reaction. Describe what happens to the energy during an exothermic and endothermic reaction. Explain why exothermic and endothermic reactions are used
Catalysts and Activation Energy
hbscienceresourceshbscienceresources

Catalysts and Activation Energy

(0)
By the end of the lesson learners should be able to: Identify what’s meant by activation energy. Describe how catalysts affect a chemical reaction. Explain why companies should use catalysts.