Hero image

Alex Reeve and Peter Whyte

These free lessons show how the study of architecture supports the teaching of maths in junior & secondary schools. If you are attracted to the use of geometry of architecture to support your lesson plans but this is your first time, you may experience an unaccustomed enthusiasm in the classroom with a high demand for your attention. This may put you under pressure, leading you to give up. Be patient. Keep going. Have an assistant. Students will soon grasp the concepts.

These free lessons show how the study of architecture supports the teaching of maths in junior & secondary schools. If you are attracted to the use of geometry of architecture to support your lesson plans but this is your first time, you may experience an unaccustomed enthusiasm in the classroom with a high demand for your attention. This may put you under pressure, leading you to give up. Be patient. Keep going. Have an assistant. Students will soon grasp the concepts.
Construction Design Mathematics: Gothic architecture: lancet triplets
sonneteersonneteer

Construction Design Mathematics: Gothic architecture: lancet triplets

(0)
How to draw lancet triplets Once the students are at ease with drawing a lancet window (see relevant lesson plan) then try lancet triplets using the illustrated ieasy-to-follow instructions. A very elegant window arrangement is to draw the triplets together with the centre light being taller and slightly wider than the outer lights. A good example can be seen at Temple Church in London, completed in 1240. Each light has its own dripstone. Within the dripstone are mouldings that descend onto the capitals. The capitals sever the multiplicity of mouldings from the single shaft below thereby producing a pleasing contrast.
Construction Design Mathematics: a circle, elliptical & ogee curve or mouchette
sonneteersonneteer

Construction Design Mathematics: a circle, elliptical & ogee curve or mouchette

(0)
School Curriculum: Key Stage 3 & 4 Mathematics: drawing angles using a pair of compasses and a straight edge; centroid of a triangle; congruent circles within a circle: manipulating shapes, Pythagoras Theorem and the sine rule; Properties of 30°-60° 90° triangle: Drawing a mouchette is based on circle stacking, i.e. arranging three congruent circles within a circle. The window at St Thomas of Canterbury, Northaw required builders to find appropriate centres of the smaller congruent cirlces when the larger circle had been designated. To effect this the design could often be manipulated mathematically to produce a triangle that in turn enabled calculation of sides or angles by the 30° -60° -90° rule if a right angle was present. It was a short step from the reticulated Curvilinear tracery (see relevant lesson plan) to the use of a mouchette as a motif. A mouchette is a daggerlike motif found most often in 14th century Decorated church tracery. It is formed by elliptical and ogee curves that produce a point at one end and an incomplete circle at the other.
Trefoil geometry, drawn with lancet arches
sonneteersonneteer

Trefoil geometry, drawn with lancet arches

(0)
Key Stage 2 & 3 mathematics: Rotational symmetry occurs when a shape, on being rotated around a centre point a number of degrees, appears the same. The order of symmetry is the number of positions that a shape appears the same in a 360-degree rotation. An equilateral triangle has rotational symmetry of order three, i.e. it may be turned about its centre point into three identical positions. A trefoil and a pointed trefoil (see appropriate lesson plan), being constructed on an equilateral triangle, may be turned about their centre points into three identical positions, i.e. both have rotational symmetry of order three. Key Stage 4 mathematics: A circle which touches the three vertices of a triangle is called the circumcircle of a triangle. The centre of a circumcircle is the point where all the perpendicular bisectors of the triangle’s sides meet. This point is called the circumcentre. The radius of the circumcircle is termed the triangle’s circumradius. Having drawn a regular polygon, arcs can be drawn with their centre points at the vertices of the polygon, and the radii equal to half the length of the edges of the polygon. In this way a trefoil, quatrefoil, cinquefoil or multifoil is formed when each arc just touches its neighbours. In 1254 a Catholic religious order was founded in France called the Order of Saint Augustine. Monks of this Order followed the teachings of St Augustine of Hippo who, in the fifth century, advocated the virtues of chastity, poverty and obedience as essential for a religious life. The monks were obliged to live together in peace and harmony, to share labour, pray together, and eat in silence. They were also to look after the sick. Pilgrims flocked to their monasteries one of which was the Sanctuary of Rocamadour in South-West France. It is a spectacular monastery built into the side of a cliff on the pilgrim route known as the Way of St James. Unusually it has made use of lancet and trefoil design for an entrance.
History, maths & geometry of a Roman arch
sonneteersonneteer

History, maths & geometry of a Roman arch

(0)
The lesson examines the history, purpose and construction of the Roman arch, and how it was developed through mathematics developed by Archimedes in his experiments to measure pi (π). Students will conduct experiments to ascertain a measurement of π, and are provided with illustrated instruction in the drawing of a `Roman arch and brace.
The emergence of the ogee or S-shaped arch
sonneteersonneteer

The emergence of the ogee or S-shaped arch

(0)
How to draw an ogee arch Illustrated and easy-to-follow instructions on how to draw an ogee arch. The ogee or S-shaped arch is the principal architectural feature of the Decorated period church window. The ogee as an architectural motif has a long history: it had been used in India in antiquity; it arrived in Egypt in the ninth century, then in Venice in the thirteenth. Soon after it appearance in Venice, it turned up in England. Theories explaining the ogee’s appearance in England are explored. School Curriculum: Key Stage 3 Mathematics: Draw and manipulate triangles, arcs and semicircles with increasing accuracy; identify their properties, including line symmetry.
Draw a front elevation of a Classical temple
sonneteersonneteer

Draw a front elevation of a Classical temple

(0)
This lesson is suitable for more able pupils at Key Stage 2 and most pupils at Key Stage 3. It is an exercise in drawing the frontal elevation of a Classical Doric temple. It reinforces skills in measuring, the accurate drawing of straight lines, and using a protractor. Drawing a Doric temple supports the teaching of 2-D shapes in a novel and imaginative way, and covers the definitions and properties of rectangles and isosceles triangles.
Construction design mathematics: Pythagoras and a Classical temple stylobate
sonneteersonneteer

Construction design mathematics: Pythagoras and a Classical temple stylobate

(0)
This lesson is designed for mathematics students at Key Stage 3. It fuses the study of Pythagoras’ Theorem with the study and design of the stylobates - or floor plans - of several Classical temples. The Theorem is approached in an easy to understand step-by-step way . Pythagorean triples are introduced through the medium of a plan of the Classical temple stylobate. The teacher and student are then guided through the process of drawing a floor plan using Ancient Greek units using a pair of compasses, pencil and ruler. The lesson also includes information on the siting and development of the Classical temple.
The geometry of the volute of an Ionic column
sonneteersonneteer

The geometry of the volute of an Ionic column

(0)
Studying the geometry of a Classical Ionic column can be undertaken with satisfying results at Key Stage, 2, 3 & 4. At Key Stage 2 & Drawing a volute with semicircles enables students to create a pattern with repeating shapes in different sizes and orientations. Students will thereby become familiar with the properties of a circle (circumference, radius & diameter). At Key Stage 4 drawing a volute with quadrants will facilitate the calculation of arc length subtended by those quadrants.