Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Structure of the NERVOUS SYSTEM
GJHeducationGJHeducation

Structure of the NERVOUS SYSTEM

(0)
A resourced lesson which looks at the organisation of the human nervous system and explores how these structures are involved in nervous reactions. The lesson includes an engaging lesson presentation (27 slides) and an associated worksheet with an understanding check. The lesson begins by looking at different examples of stimuli and therefore introducing the key term, receptors, as structures which detect these changes in the environment. Moving forwards, a quiz competition is used to introduce the students to the abbreviations CNS and PNS and students will learn the structures that are found in these parts. At this stage of the lesson, a quick understanding check is written into the lesson to see whether students know the functions of each of the structures and check whether they can order them correctly from stimuli to effectors. Students will meet the term synapse and be taught that the conduction across these gaps is slow so that this knowledge can be applied in future lessons on reflexes. The remainder of the lesson challenges the students to apply their new-found knowledge in ordering an example of a nervous reaction.
Plant hormones
GJHeducationGJHeducation

Plant hormones

(0)
A fully-resourced lesson which looks at how auxins are involved in the response to the stimuli and gravity. The lesson includes an engaging lesson presentation (29 slides) and associated worksheets which have been differentiated. The lesson begins by challenging students to consider the different stimuli that a plant will respond to. There is focus throughout the lesson on the use of key terminology and students will start immediately by meeting the different types of tropisms. A quick competition is used to introduce the students to auxins and the key details of these chemicals are discussed. They will see how they are produced in the tips of shoots and roots and cause cell elongation in the shoots. A summary task is used to get the students to explain how a plant grow towards a light source. The next task challenges the students to apply their knowledge as a range of experimental data is shown to them and they have to predict how the plant would respond and explain - this task has been differentiated two ways so those students who need extra assistance can access the learning. The final part of the lesson looks at gravitropism and all of the learning is brought together to explain how the shoots grow away and the roots towards. This lesson has been written for GCSE students.
OCR GCSE Biology B2 REVISION (Scaling up)
GJHeducationGJHeducation

OCR GCSE Biology B2 REVISION (Scaling up)

(0)
An engaging lesson presentation (59 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B2 (Scaling up) of the OCR Gateway A GCSE Biology specification The topics that are tested within the lesson include: Diffusion Osmosis Active transport Exchange and transport Circulatory systems Heart and blood Plant transport systems Transpiration Students will be engaged through the numerous activities including quiz rounds like “Where’s LENNY?" whilst crucially being able to recognise those areas which need further attention
The cell cycle (OCR A-level Biology A)
GJHeducationGJHeducation

The cell cycle (OCR A-level Biology A)

(0)
This lesson describes the processes that take place during interphase, mitosis and cytokinesis and outlines how checkpoints regulate the cell cycle. The PowerPoint and accompanying resources have been designed to cover points 2.1.6 (a & b) of the OCR A-level Biology specification and prepares the students for the upcoming lessons on the main stages of mitosis and its significance in life cycles The students were introduced to the cell cycle at GCSE so this lesson has been planned to build on that knowledge and to emphasise that the M phase which includes mitosis (nuclear division) only occupies a small part of the cycle. The students will learn that interphase is the main stage and that this is split into three phases, G1, S and G2. A range of tasks which include exam-style questions, guided discussion points and quick quiz competitions are used to introduce key terms and values and to describe the main processes that occur in a very specific order. There is also a focus on the checkpoints, such as the restriction point that occurs before the S phase to ensure that the cell is ready for DNA replication. Extra time is taken to ensure that key terminology is included and understood, such as sister chromatid and centromere, and this focus helps to show how it is possible for genetically identical daughter cells to be formed at the end of the cycle. Important details of mitosis are introduced so students are ready for the next lesson, before the differences in cytokinesis in animal and plant cells are described.
The structure of the HEART
GJHeducationGJHeducation

The structure of the HEART

(0)
A fully-resourced lesson which looks at the structure of the human heart and its associated vessels and ensures that students know the journey which blood takes through this organ. The lesson includes an engaging lesson presentation (25 slides), a diagram to label and a worksheet to summarise the journey. The lesson begins with a bit of fun as students see the script to part of an episode from Friends. Students will recognise the alternative definition of the heart and ultimately recall that the function of this organ is to pump blood around the body. Moving forwards, the main task of the lesson involves labelling the four chambers and the blood vessels which bring blood towards and away from the heart. Students are given useful hints along the way to enable them to discover the answers rather than simply being given a finished diagram. Time is taken to look at the valves and discuss their function so that students can understand this role when they encounter them in veins. The lesson concludes with one final task that challenges the students to detail the journey of blood through the heart. There are regular progress checks throughout the lesson to allow the students to check on their understanding. As always, the lesson finishes with a slide containing advanced terminology so that students who have aspirations to take A-level Biology can extend and deepen their knowledge
The effect of temperature on enzyme activity (OCR A-level Biology)
GJHeducationGJHeducation

The effect of temperature on enzyme activity (OCR A-level Biology)

(0)
This lesson explains the effects of temperature increases on enzyme activity and describes how to calculate the temperature coefficient. The PowerPoint and the accompanying resource are part of the second lesson in a series of 3, which cover the content detailed in point 2.1.4 (d) [i] of the OCR A-level Biology A specification and this lesson has been specifically planned to tie in with an earlier lesson covering 2.1.4 (a, b & c) where the roles and mechanism of action of enzymes were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in modules 6 and 5. Moving forwards, the next part of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. The final part of the lesson introduces the Q10 temperature coefficient and students are challenged to apply this formula to calculate the value for a chemical reaction and a metabolic reaction to determine that enzyme-catalysed reactions have higher rates of reaction Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of enzyme activity in a reaction and not the practical skills that is part of a lesson covering specification point 2.1.4 (d) [ii]
Edexcel GCSE Biology Topic 4 REVISION (Natural selection and modification)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 4 REVISION (Natural selection and modification)

(0)
This REVISION resource has been written with the aim of motivating the students whilst they are challenged on their knowledge of the content in TOPIC 4 (Natural selection and modification) of the Edexcel GCSE Biology specification. The resource contains an engaging and detailed PowerPoint (82 slides) and accompanying worksheets, some of which are differentiated to provide extra scaffolding to students when it is required. The wide range of activities have been designed to cover as much of topic 4 as possible but the following sub-topics have been given a particular focus: The discovery of human fossils Stone tools as evidence of human evolution Evolution by natural selection The development of antibiotic resistance in bacteria The three domain and five kingdom classification methods Genetic engineering Selective breeding The benefits and risks of genetic engineering and selective breeding for the growing population The use of fertilisers and biological control There is a large emphasis on mathematical skills in the new specification and these are tested throughout the lesson. This resource is suitable for use at the end of topic 4, in the lead up to mocks or in the preparation for the final GCSE exams.
Stabilising, directional and disruptive selection (OCR A-level Biology)
GJHeducationGJHeducation

Stabilising, directional and disruptive selection (OCR A-level Biology)

(0)
This engaging and fully-resourced lesson looks at examples of stabilising, directional and disruptive selection as the three main types of selection. The PowerPoint and accompanying resources have been designed to cover the 1st part of point 6.1.2 (e) of the OCR A-level Biology specification which states that students should be able to demonstrate and apply an understanding of the factors that affect the evolution of a species. The lesson begins by making a link to a topic from module 4 as the students are challenged to use the mark, release, recapture method to calculate numbers of rabbits with different coloured fur in a particular habitat. Sketch graphs are then constructed to show the changes in the population size in this example. A quick quiz competition is used to engage the students whilst introducing the names of the three main types of selection before a class discussion point encourages the students to recognise which specific type of selection is represented by the rabbits. Key terminology including intermediate and extreme phenotypes and selection pressure are used to emphasise their importance during explanations. A change in the environment of the habitat and a change in the numbers of the rabbits introduces directional selection before students will be given time to discuss and to predict the shape of the sketch graph for disruptive selection. Students are challenged to apply their knowledge in the final task of the lesson by choosing the correct type of selection when presented with details of a population and answer related questions. This lesson has been designed to tie in with another uploaded lesson on genetic drift which covers the second part of this specification point.
Sex-linkage (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Sex-linkage (Pearson Edexcel A-level Biology)

(0)
This is a fully-resourced lesson which looks at the inheritance of genes that are carried on the sex chromosomes in sex-linkage. Students will explore sex-linked diseases in humans and then are challenged to apply their knowledge to examples in other animals. The detailed PowerPoint and associated resources have been designed to cover the second part of point 3.8 (ii) of the Pearson Edexcel A-level Biology (Salters Nuffield) specification which states that students should understand sex-linkage. Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to apply their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender.
Genetic biodiversity (OCR A-level Biology)
GJHeducationGJHeducation

Genetic biodiversity (OCR A-level Biology)

(0)
This fully-resourced lesson describes genetic biodiversity as the number of genes in a population and considers how it can be assessed. The engaging PowerPoint and accompanying differentiated resources have been primarily designed to cover point 4.2.1 (e) of the OCR A-level Biology A specification but also introduces inheritance and codominance so that students are prepared for these genetic topics when they are covered in module 6.1.2 In order to understand that 2 or more alleles can be found at a gene loci, students need to be confident with genetic terminology. Therefore the start of the lesson focuses on key terms including gene, locus, allele, recessive, genotype and phenotype. A number of these will have been met at GCSE, as well as during the earlier lessons in module 2.1.3 when considering meiosis, so a quick quiz competition is used to check on their recall of the meanings of these terms. The CFTR gene is then used as an example to demonstrate how 2 alleles results in 2 different phenotypes and therefore genetic diversity. Moving forwards, students will discover that more than 2 alleles can be found at a locus and they are challenged to work out genotypes and phenotypes for a loci with 3 alleles (shell colour in snails) and 4 alleles (coat colour in rabbits). Two calculations are provided to the students that can calculate the % of loci with more than one allele and the proportion of polymorphic gene loci. At this point, the students are introduced to codominance and again they are challenged to apply their understanding to a new situation by working out the number of phenotypes in the inheritance of blood groups. The lesson concludes with a brief consideration of the HLA gene loci, which is the most polymorphic loci in the human genome, and students are challenged to consider how this sheer number of alleles can affect the chances of tissue matches in organ transplantation
Primary & secondary responses & antibodies (OCR A-level Biology)
GJHeducationGJHeducation

Primary & secondary responses & antibodies (OCR A-level Biology)

(0)
This lesson describes the differences between the primary and secondary responses and describes how the structure of antibodies is related to function. The PowerPoint and accompanying resources have been designed to cover specification points 4.1.1 (g), (h) and (i) as detailed in the OCR A-level Biology A specification and emphasises the importance of memory cells. As memory B cells differentiate into plasma cells that produce antibodies when a specific antigen is re-encountered, it was decided to link the immune responses and antibodies together in one lesson. The lesson begins by checking on the students incoming knowledge to ensure that they recognise that B cells differentiate into plasma cells and memory cells. This was introduced in a previous lesson on the specific immune response and students must be confident in their understanding if the development of immunity is to be understood. A couple of quick quiz competitions are then used to introduce key terms so that the structure of antibodies in terms of polypeptide chains, variable and constant regions and hinge regions are met. Time is taken to focus on the variable region and to explain how the specificity of this for a particular antigen allows neutralisation and agglutination to take place. The remainder of the lesson focuses on the differences between the primary and secondary immune responses and a series of exam-style questions will enable students to understand that the quicker production of a greater concentration of these antibodies in the secondary response is due to the retention of memory cells.
Structure & properties of cell membranes (Edexcel International A-level Biology)
GJHeducationGJHeducation

Structure & properties of cell membranes (Edexcel International A-level Biology)

(0)
This detailed lesson describes the structure and properties of the cell membrane, focusing on the phospholipid bilayer, cholesterol and membrane proteins. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 2.2 (i) of the Edexcel International A-level Biology specification and clear links are made to Singer and Nicholson’s fluid mosaic model which is covered in the following lesson Students met triglycerides in topic 1 and so a quick quiz competition at the start of the lesson challenges their recall of the structure of these lipids so that they can recognise the similarities and differences to the structure of phospholipids. Time is taken to look at the differing properties of the phosphate head and the fatty acid tails in terms of water and the class is challenged to work out how the phospholipids must be arranged when there’s an aqueous solution on the inside and outside of the cell. This introduces the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are fused and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
AQA GCSE Biology Unit B4 REVISION (Bioenergetics)
GJHeducationGJHeducation

AQA GCSE Biology Unit B4 REVISION (Bioenergetics)

(0)
An engaging lesson presentation (68 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B4 (Bioenergetics) of the AQA GCSE Biology specification (specification unit B4.4). The topics that are tested within the lesson include: Photosynthesis reaction Rate of photosynthesis Uses of glucose from photosynthesis Aerobic respiration Anaerobic respiration Response to exercise Students will be engaged through the numerous activities including quiz rounds like “Take a STEP back” and “Shine a LIGHT on the errors” whilst crucially being able to recognise those areas which need further attention
Coenzymes, cofactors and prosthetic groups (OCR A-level Biology)
GJHeducationGJHeducation

Coenzymes, cofactors and prosthetic groups (OCR A-level Biology)

(0)
This engaging lesson explains why coenzymes, cofactors and prosthetic groups are needed in some enzyme-controlled reactions. The PowerPoint and accompanying resource have been primarily designed to cover point 2.1.4 (e) of the OCR A-level Biology specification but can also be used as a revision lesson for the roles of ions as was covered back in module 2.1.2. The lesson begins with an introduction of the description of a cofactor and students will learn that some are permanently bound to the enzyme whilst others only form temporary associations. A quick quiz competition runs over the course of the lesson and is used to introduce prosthetic groups, mineral ion cofactors and organic coenzymes and zinc ions with carbonic anhydrase, chloride ions with amylase and NAD are used as examples of each type. The lesson has been planned to make links to related topics such as cations, anions, transport of carbon dioxide and respiration which will test students on their prior knowledge as well as prepare them for these topics in modules 3 and 5.
Products of the light-independent reactions (Edexcel A-level Biology A)
GJHeducationGJHeducation

Products of the light-independent reactions (Edexcel A-level Biology A)

(0)
This lesson describes how the products of the light-independent reactions of photosynthesis are used by plants, animals and other organisms. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.8 (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification concerning the uses of GP and GALP but as the lesson makes continual references to biological molecules, it can act as a revision tool for a lot of the content of topic 1 and 2. The previous lesson described the light-independent reactions and this lesson builds on that understanding to demonstrate how the intermediates of the cycle, GP and GALP, are used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the GALP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from GALP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose (and fructose and galactose) sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this topic on the structure of the chloroplast and the light-dependent and light-independent reactions of photosynthesis
Ecological terms & distribution of organisms (Edexcel A-level Biology A)
GJHeducationGJHeducation

Ecological terms & distribution of organisms (Edexcel A-level Biology A)

(0)
This lesson ensures that students know the meaning of key ecological terms and explains how biotic and abiotic factors control the distribution of organisms. The engaging PowerPoint and accompanying resources have been designed to cover points 5.1, 5.2 and 5.3 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and therefore cover the biological definitions of ecosystem, community, population and habitat. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry distribution niche The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Links are made to photosynthesis and net primary productivity as these will be met later in topic 5 as well as challenging their prior knowledge of adaptations, classification and biological molecules. The final part of the lesson uses an exam-style question to get the students to recognise that biotic and abiotic factors control the distribution of organisms in a habitat and to recall the concept of niche.
Stem cells, totipotency & pluripotency (Edexcel SNAB)
GJHeducationGJHeducation

Stem cells, totipotency & pluripotency (Edexcel SNAB)

(0)
This fully-resourced lesson describes the meaning of the terms stem cell, pluripotency and totipotency. The PowerPoint and accompanying worksheets have been designed to cover points 3.11 (i) and (ii) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and therefore this lesson also contains discussion periods where the topic is the decisions that the scientific community have to make about the use of stem cells in medical therapies. The lesson begins with a knowledge recall of the structure of eukaryotic cells and the students have to use the first letters of each of the four answers to reveal the key term, stem cell. Time is then taken to consider the meaning of cellular differentiation, and this leads into the key idea that not all stem cells are equal when it comes to the number of cell types that they have the potential to differentiate into. A quick quiz round introduces the five degrees of potency, and then the students are challenged to use their understanding of terminology to place totipotency, pluripotency, multipotency, oligopotency and unipotency in the correct places on the potency continuum. Although the latter three do not have to be specifically known based on the content of specification point 3.11 (i), an understanding of their meaning was deemed helpful when planning the lesson as it should assist with the retention of knowledge about totipotency and pluripotency. These two highest degrees of potency are the main focus of the lesson, and key details are emphasised such as the ability of totipotent cells to differentiate into any extra-embroyonic cell, which the pluripotent cells are unable to do. The morula, and inner cell mass and trophoblast of the blastocyst are used to demonstrate these differences in potency. The final part of the lesson discusses the decisions that the scientific community have to make about the use of embryonic stem cells, adult stem cells and also foetal stem cells which allows for a link to chorionic villus sampling from topic 2. There is also a Maths in a Biology context question included in the lesson (when introducing the morula) to ensure that students continue to be prepared for the numerous calculations that they will have to tackle in the terminal exams. This resource has been differentiated two ways to allow students of differing abilities to access the work
The BLOOD
GJHeducationGJHeducation

The BLOOD

(0)
A resourced lesson which looks at three of the main components of blood and ensures that students can relate their features to their function. The lesson includes an engaging lesson presentation (31 slides) and an associated worksheet The lesson begins by challenging the students to recognise blood from a description of some of its contents. This will enable students to identify some of the substances like hormones and urea that are carried in the plasma. Moving forwards, the rest of the lesson takes a format where the students have to act as recruitment consultants. They have been given 3 job roles to fill and once they have decided on the right candidates for the job, they need to be able to explain why these have been chosen. Students will go study the red and white blood cells and platelets, focusing on how their different specialised features enable them to effectively carry out their respective functions. Students will be able to compare the cells in terms of size, number of nuclei and ultimately explain why they have their features. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been designed for GCSE students but is perfectly suitable to be used with KS3 students who are studying the circulatory system
Decomposers
GJHeducationGJHeducation

Decomposers

(0)
A fully-resourced lesson which looks at how decomposers are involved with the process of decay. The lesson includes an engaging and detailed lesson presentation (31 slides) and an associated differentiated worksheets. The lesson begins by displaying the definitions for decomposers and detritivores and challenging students to use their bingo cards to see if they can work out the words which are being described. Students will learn how these two types of organisms work together to break down matter. Moving forwards, a worked example is used to guide students through how to calculate the rate of decay from a range of different data types. Students will be challenged to act like a travel agent for decomposers to come up with the different conditions that they require. Finally, they have to bring all of the new-found knowledge together to answer a range of summary questions. These questions are differentiated two ways so that differing abilities can access the work. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
The Carbon Cycle
GJHeducationGJHeducation

The Carbon Cycle

(0)
This lesson has been written for GCSE students with a focus on the key processes and reactions involved in the carbon cycle as well as discussions centering around how the levels of carbon dioxide alter during the day and over longer periods of time. A number of quick competitions have been written into the lesson to introduce key terms or to challenge students to recognise key reactions that they will have already met in their Biology lessons. As each stage of the cycle is encountered, time is taken to discuss the potential impacts and the organisms involved. The remainder of the lesson looks at carbon dioxide levels. Initially, students are challenged to explain why the levels would change during the course of a day. Students are already likely to be aware that carbon dioxide levels have increased over the last 100/200 years but not necessarily how much. Time is taken to focus on the mathematical skills which could be challenged on this topic and the percentage change equation is shown to the students so they can quantify their answers. As a class, deforestation and its effect on the carbon cycle and atmospheric levels are discussed so that students can mirror this in a homework task about combustion of fossil fuels. Progress checks are written into the lesson at regular intervals so that students are constantly assessing their understanding.