Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1134k+Views

1937k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
GENETIC TERMS (CIE International A-level Biology)
GJHeducationGJHeducation

GENETIC TERMS (CIE International A-level Biology)

(0)
This lesson focuses on the use and explanation of key genetic terms which will support students in their understanding of the topic 16 (inherited change) of the CIE International A-level Biology specification. In this topic, students are expected to use genetic diagrams to solve problems and this is only possible with a clear understanding of the genetic terminology that will be used in related exam questions. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous
OCR A-level Biology GENETIC TERMINOLOGY
GJHeducationGJHeducation

OCR A-level Biology GENETIC TERMINOLOGY

(0)
This lesson acts as an introduction to part b of module 6.1.2 of the OCR A-level Biology A specification and focuses on 16 key genetic terms. In this module, students are expected to be able to demonstrate and apply their knowledge and understanding of genetic diagrams and phenotypic ratios to show patterns of inheritance and this is only possible with a clear understanding of the genetic terminology that will be used in related exam questions. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous
Topic 7.1: Inheritance (AQA A-level Biology)
GJHeducationGJHeducation

Topic 7.1: Inheritance (AQA A-level Biology)

7 Resources
This bundle contains 7 lessons which combine to cover the content of topic 7.1 (Inheritance) of the AQA A-level Biology specification. All 7 are fully-resourced and contain differentiated tasks which allow students of differing abilities to access the work whilst being challenged. They have been designed to include a wide range of activities that check the understanding of the current topic as well as making links between other parts of this topics and topics covered earlier in the course. The lessons on codominant and multiple alleles and epistasis are free so you can sample the quality of this bundle before deciding to make a purchase
Chi-squared test (AQA A-level Biology)
GJHeducationGJHeducation

Chi-squared test (AQA A-level Biology)

(1)
This lesson guides students through the use of the chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated task worksheets that have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use the test to compare the goodness of fit between the observed phenotypic ratios and expected ratios. The lesson has been written to include a step-by-step guide that demonstrates how to carry out the test in small sections. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty. This is the final lesson of topic 7.1 (inheritance) and links are made throughout the lesson to earlier parts of this topic such as dihybrid inheritance as well as to earlier topics such as meiosis.
Epistasis (AQA A-level Biology)
GJHeducationGJHeducation

Epistasis (AQA A-level Biology)

(4)
This fully-resourced lesson explores how the presence of particular alleles at one locus can mask the expression of alleles at a second locus in epistasis. The detailed and engaging PowerPoint and associated resources have been designed to cover the part of point 7.1 of the AQA A-level specification which states that students should be able to use fully-labelled genetic diagrams to predict or interpret the results of crosses involving epistasis. This is a topic which students tend to find difficult, and therefore the lesson was written to split the topic into small chunks where examples of dominant, recessive and complimentary epistasis are considered, discussed at length and then explained. Understanding checks, in various forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. There are regular links to related topics such as dihybrid inheritance so that students can meet the challenge of interpreting genotypes as well as recognising the different types of epistasis. The lesson has been designed to tie in with the other uploaded lessons on the topic of inheritance (7.1), so if you like the quality of this lesson please take a moment to look at these too
Autosomal linkage (AQA A-level Biology)
GJHeducationGJHeducation

Autosomal linkage (AQA A-level Biology)

(1)
This clear and concise lesson explains how the inheritance of two or more genes that have loci on the same autosome demonstrates autosomal linkage. The engaging PowerPoint and associated resource have been designed to cover the part of point 7.1 of the AQA A-level Biology specification which states that students should be able to use fully-labelled genetic diagrams to interpret the results of crosses involving autosomal linkage. This is a topic which can cause confusion for students so time was taken in the design to split the concept into small chunks. There is a clear focus on how the number of original phenotypes and recombinants can be used to determine linkage and suggest how the loci of the two genes compare. Important links to other topics such as crossing over in meiosis are made to enable students to understand how the random formation of the chiasma determines whether new phenotypes will be seen in the offspring or not. Linkage is an important cause of variation and the difference between observed and expected results and this is emphasised on a number of occasions. The main task of the lesson acts as an understanding check where students are challenged to analyse a set of results involving the inheritance of the ABO blood group gene and the nail-patella syndrome gene to determine whether they have loci on the same chromosome and if so, how close their loci would appear to be. This lesson has been written to tie in with the other 6 lessons from topic 7.1 (Inheritance) and these have also been uploaded
Sex-linkage (AQA A-level Biology)
GJHeducationGJHeducation

Sex-linkage (AQA A-level Biology)

(3)
This fully-resourced lesson explores the inheritance of sex-linked diseases in humans and then challenges the students to apply their knowledge to examples in other animals. The detailed PowerPoint and associated differentiated resources have been designed to cover the part of point 7.1 of the AQA A-level specification which states that students should be able to use fully-labelled genetic diagrams to predict the results of crosses involving sex-linkage. Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to carry out a dihybrid cross that involves a sex-linked disease and an autosomal disease before applying their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender. All of the tasks are differentiated so that students of differing abilities can access the work and all exam questions have fully-explained, visual markschemes to allow them to assess their progress and address any misconceptions
Codominant and multiple alleles (AQA A-level Biology)
GJHeducationGJHeducation

Codominant and multiple alleles (AQA A-level Biology)

(4)
This fully-resourced lesson covers the part of specification point 7.1 of the AQA A-level Biology specification which states that students should be able to use genetic diagrams to interpret the results of crosses involving codominant and multiple alleles. The inheritance of ABO blood groups has three alleles at the gene locus on chromosome 9 where the alleles for A and B are codominant and this is used to introduce the two concepts. A range of tasks challenges the students to write genotypes, and construct genetic diagrams to calculate phenotypic ratios. They have to apply their understanding by working out the blood groups for a number of family members when presented with an incomplete pedigree tree. The final task of the lesson challenges their application skills further but this time, the animals involved are not humans. Each question is followed by a detailed, visual mark scheme so students can assess their progress and address any misconceptions
Monohybrid & dihybrid crosses (AQA A-level Biology)
GJHeducationGJHeducation

Monohybrid & dihybrid crosses (AQA A-level Biology)

(0)
This fully-resourced lesson challenges the students to use fully labelled genetic diagrams to interpret the results of monohybrid and dihybrid crosses as detailed in topic 7.1 (Inheritance) of the AQA A-level Biology specification. Step-by-step guides are used to demonstrate how diagrams for the inheritance of one and two genes should be constructed and a focus is given to the areas where students commonly make mistakes, such as in writing out the gametes. The main task of each section of the lesson provides an opportunity for the students to apply their understanding by calculating phenotypic ratios. All of the questions have fully-explained mark schemes and students can assess their progress and address any misconceptions immediately. Key genetic terminology is used throughout the lesson and mirrors that used in actual exam questions.
Genetic terminology (AQA A-level Biology)
GJHeducationGJHeducation

Genetic terminology (AQA A-level Biology)

(0)
This lesson acts as an introduction to topic 7.1 of the AQA A-level Biology specification and focuses on 16 key genetic terms that will support students in forming a deep understanding of inheritance. As some of these terms were met at GCSE, this fully-resourced lesson has been designed to include a wide range of activities that build on this prior knowledge and provide clear explanations as to their meanings as well as numerous examples of their use in both questions and exemplary answers. The main task provides the students with an opportunity to apply their understanding by recognising a dominance hierarchy in a multiple alleles characteristic and then calculating a phenotypic ratio when given a completed genetic diagram. Other tasks include prior knowledge checks, discussion points to encourage students to consider the implementation of the genetic terms and quiz competitions to introduce new terms, maintain engagement and act as an understanding check. The 16 terms are genome, gene, chromosome, gene locus, homologous chromosomes, alleles, dominant, recessive, genotype, codominance, multiple alleles, autosomes, sex chromosomes, phenotype, homozygous and heterozygous
Control of blood glucose concentration (AQA GCSE Combined Science FT)
GJHeducationGJHeducation

Control of blood glucose concentration (AQA GCSE Combined Science FT)

(3)
This lesson has been designed to cover the detail of specification point 4.5.3.2 of the AQA GCSE Combined Science FOUNDATION TIER which states that students should be able to describe how the body detects and responds to an increase in blood glucose concentration. A considerable amount of time has been taken in the planning to ensure that the wide range of activities engages and motivates the students but that the key details are covered and understanding is checked and checked again. The start of the lesson uses a range of prior knowledge checks and quiz competitions to answer the questions of what actually is glucose and why is it so important that the levels in the blood are controlled. Students are then introduced to glycogen and the fact that this carbohydrate can be stored is reiterated so that they can recognise how glucose must be converted into this substance to lower the blood concentration. Again, a quiz round is used to get them to recall that the pancreas will be the receptor and the liver will act as the effector. The main task of the lesson involves the formation of a bullet point answer where students are challenged to use the information from earlier in the lesson to complete this description.
CIE International A-level Biology REVISION LESSONS
GJHeducationGJHeducation

CIE International A-level Biology REVISION LESSONS

10 Resources
Each of the 10 revision lessons that are included in this bundle have been designed to motivate and engage the students whilst they are challenged on their knowledge of the content of the CIE International A-Level Biology specification. The detailed PowerPoints contain a wide range of activities which include exam questions with explained answers, differentiated tasks and quiz competitions and are supported by the accompanying worksheets. The topics covered in this bundle are: TOPIC 1: Cell structure TOPIC 2: Biological molecules TOPIC 3: Enzymes TOPIC 4: Cell membranes and transport TOPIC 6: Nucleic acids and protein synthesis TOPIC 8: Transport in mammals TOPIC 12: Energy and respiration TOPIC 13: Photosynthesis TOPIC 16: Inherited change TOPIC 18: Biodiversity, classification and conservation Helpful hints are provided throughout the lessons to help the students with exam technique and in structuring their answers. These lessons are suitable for use throughout the course and can be used for revision purposes at the end of a module or in the lead up to mocks or the actual A LEVEL exams If you want to see the quality of these lessons, download the topic 2, 6 and 18 revision lessons as these are free
2.1.2 REVISION: Biological molecules (OCR A-level Biology A)
GJHeducationGJHeducation

2.1.2 REVISION: Biological molecules (OCR A-level Biology A)

(0)
This is a fully-resourced and engaging REVISION LESSON which challenges the students on their knowledge and understanding of the content of module 2.1.2 (Biological molecules) of the OCR A-level Biology A specification. As this topic tends to be poorly understood by students, the lesson has been designed to include a wide range of activities that include differentiated exam questions, quick tasks and quiz competitions which will engage the students whilst they assess their progress. It has been designed to cover as much of the specification as possible but the following sub-topics have received particular attention: Formation of polysaccharides by glycosidic bonds between monomers Recognising monosaccharides, disaccharides and polysaccharides The structure of starch and glycogen in relation to their function as stores and providers of energy Water as a solvent with a high specific heat capacity and a high specific latent heat of vaporisation Structure and bonding in proteins The structure of globular and fibrous proteins as demonstrated by haemoglobin and collagen The structure and function of cellulose Links are made to other topics so that students are able to see how questions can include parts from different Biological concepts
CIE International A-level Biology TOPIC 12 REVISION (Energy and respiration)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 12 REVISION (Energy and respiration)

(0)
This fully-resourced REVISION LESSON has been designed to provide the students with numerous opportunities to assess their understanding of the content of topic 12 (Energy and respiration) of the CIE International A-level Biology specification. The importance of this metabolic reaction is obvious and this is reflected in the volume of questions in the terminal exams which require an in depth knowledge of the stages of both aerobic and anaerobic respiration. The lesson contains a wide range of activities that cover the following points of the specification: Glycolysis as a stage of aerobic and anaerobic respiration The use and production of ATP through respiration Anaerobic respiration in mammalian muscle tissue The stages of aerobic respiration that occur in the mitochondrial matrix Oxidative phosphorylation The use of respirometers Calculating the respiratory quotient value for different substrates Revision lessons which cover the other topics of the specification are also uploaded and tie in well with this lesson.
CIE International A-level Biology TOPIC 18 REVISION (Biodiversity, classification and conservation)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 18 REVISION (Biodiversity, classification and conservation)

(1)
This fully-resourced REVISION LESSON is detailed and engaging and covers the content of topic 18 (Biodiversity, classification and conservation) of the CIE International A-level Biology specification. This topic is often viewed as less interesting than other topics by the students but is well represented in the exams in terms of questions and so a lot of time has gone into the design to include a wide range of activities which will allow them to assess their knowledge whilst remaining motivated. All of the exam questions have full answers so students can identify any missed marks and most of the tasks are differentiated to allow students of differing abilities to access the work and remain challenged. The lesson was planned to cover as much of the specification as possible but the following sub-topics have received particular attention: The biological classification of a species Using Simpsons Index of diversity to calculate the biodiversity of the habitat The reasons to maintain biodiversity Methods of protecting endangered species The use of assisted reproduction in conservation Different methods of sampling The taxonomic hierarchy The characteristic features of the domains and kingdoms Links to the other topics of the specification are made throughout the lesson and there is also a mathematical focus to ensure that the students are comfortable when presented with the numerical challenges Due to the extensiveness of this resource, it is likely to take at least 2 lessons to cover all of the activities
CIE International A-level Biology TOPIC 13 REVISION (Photosynthesis)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 13 REVISION (Photosynthesis)

(0)
This engaging REVISION LESSON has been designed to cover the content of topic 13 (Photosynthesis) of the CIE International A-level Biology specification. Filled with a wide range of activities, that include exam questions with explanations, quick tasks and quiz competitions, the students will be motivated whilst they assess their ability to apply their knowledge. Due to the obvious importance of this reaction, assessment questions are extremely common and so a deep understanding of this topic is key to success and the lesson has been designed to cover the important ideas. The following sub-topics have received particular attention in this lesson: Photophosphorylation An outline of cyclic and non-cyclic photophosphorylation Photolysis of water The light dependent reaction The structure of the chloroplast and the site of the different reactions The Calvin cycle The limiting factors of photosynthesis Investigating the effect of light intensity using DCPIP as a redox indicator and a Hill suspension The effect of temperature on the rate There is a focus on terminology throughout the lesson so that students are comfortable with the terms that will be encountered in exam questions. Revision lessons on the other topics of the specification are uploaded so please take a moment to look at those too
CIE International A-level Biology TOPIC 6 REVISION (Nucleic acids and protein synthesis)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 6 REVISION (Nucleic acids and protein synthesis)

(3)
This is a detailed, engaging and fully-resourced REVISION LESSON which allows students of all abilities to assess their understanding of the content in topic 6 (Nucleic acids and protein synthesis) of the CIE International A-level Biology specification. Considerable time has been taken to design the lesson to include a wide range of activities to motivate the students whilst they evaluate their knowledge of DNA, RNA and the roles of these nucleic acids in DNA replication and protein synthesis. Most of the tasks have been differentiated so that students of differing abilities can access the work and move forward as a result of the tasks at hand. This lesson has been planned to cover as much of the specification as possible but the following sub-topics have received particular attention: The structure of DNA Phosphorylated nucleotides DNA replication Transcription and translation Gene mutations and their affect on the primary structure of a polypeptide The structure of RNA In addition to a focus on the current topic, links are made throughout the lesson to other topics such as the journey of an extracellular protein following translation and the cell cycle. If you like the quality of this revision lesson, please look at the other uploaded revision lessons for this specification
CIE International A-level Biology TOPIC 4 REVISION (Cell membranes and transport)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 4 REVISION (Cell membranes and transport)

(0)
This detailed and engaging REVISION LESSON has been written to cover the content of topic 4 (Cell membranes and transport) of the CIE International A-level Biology specification. The lesson consists of a PowerPoint that contains exam questions, differentiated tasks and quiz competitions and is accompanied by worksheets with further activities. The competitions act to engage the students whilst they assess their understanding of the content and challenges their ability to apply this knowledge to potentially unfamiliar situations. The lesson was designed to cover as much of the specification content as possible but the following sub-topics have received particular attention: Active transport and its applications in animals and plants Facilitated diffusion and the use of channel and carrier proteins The factors that affect diffusion as demonstrated by gas exchange at the alveoli Exocytosis Water potential and the movement of water by osmosis The effect of solutions of different water potentials on animal and plant tissue The fluid mosaic model The plasma cell membrane and the function of its components As well as covering the current topic, the design of this lesson has been conscious to include future topics. For example, a cholinergic synapse was used to challenge the students to spot examples of facilitated diffusion, simple diffusion, active transport and exocytosis. Revision lessons for the other 18 topics are uploaded on TES or are in the process of being uploaded.
CIE International A-level Biology TOPIC 3 REVISION (Enzymes)
GJHeducationGJHeducation

CIE International A-level Biology TOPIC 3 REVISION (Enzymes)

(0)
This engaging REVISION lesson has been designed to cover the content of topic 3 (Enzymes) of the CIE International A-level Biology specification. A wide range of activities have been written into the lesson to engage the students whilst they assess their understanding of the topic content. All of the exam questions contain detailed answers which students can use to identify missed marks and quiz competitions are used, like FROM NUMBERS 2 LETTERS (shown in the cover image) to recall key concepts and check on the finer details. The lesson has been planned to cover as much of the specification content as possible but the following sub-topics have received particular attention: Enzymes as globular proteins that act as biological catalysts Formation of the enzyme-substrate complex The lock and key theory and induced-fit hypothesis Competitive and non-competitive inhibitors The Michaelis-Menten constant The effect of changes in pH and temperature on the tertiary structure of the enzymes The immobilisation of enzymes using alginate Time has been taken in the design to ensure that links to other topics are made. For example, when checking the knowledge of the denaturation of enzymes due to pH and temperature, the bonds found in the tertiary structure are recalled and considered in depth.
CIE International A-level Biology Topic 2 REVISION (Biological molecules)
GJHeducationGJHeducation

CIE International A-level Biology Topic 2 REVISION (Biological molecules)

(2)
This is a fully-resourced and engaging REVISION LESSON which challenges the students on their knowledge and understanding of the topic 2 content (Biological molecules) of the CIE International A-level Biology specification. This topic isn’t always well understood by students so the lesson has been designed to include a wide range of activities that include differentiated exam questions, quick tasks and quiz competitions which will engage the students whilst they assess their progress. It has been designed to cover as much of the specification as possible but the following sub-topics have received particular attention: Formation of polysaccharides by glycosidic bonds between monomers Recognising monosaccharides, disaccharides and polysaccharides The structure of starch and glycogen in relation to their function as stores and providers of energy Water as a solvent with a high specific heat capacity and a high specific latent heat of vaporisation Structure and bonding in proteins The structure of globular and fibrous proteins as demonstrated by haemoglobin and collagen The structure and function of cellulose Links are made to other topics so that students are able to see how questions can include parts from different Biological concepts.