Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Conducting tissue of the heart (AQA A-level Biology)
GJHeducationGJHeducation

Conducting tissue of the heart (AQA A-level Biology)

(0)
This engaging lesson explores the roles of the SAN, AVN, Bundle of His and Purkyne fibres in the transmission of the wave of excitation through the heart. The PowerPoint and accompanying resources have been designed to cover the first part of point 6.1.3 of the AQA A-level Biology specification which states that students should be able to describe the myogenic stimulation of the heart and the subsequent wave of electrical activity. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 3. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology
Mutations (Pearson Edexcel A-level Biology)
GJHeducationGJHeducation

Mutations (Pearson Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at how errors in DNA replication can give rise to gene mutations and then links to an earlier topic by exploring how these base changes can affect the primary structure of a polypeptide. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 2.12 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and constantly refers back to points 2.7, 2.8 and 2.9 which detail the genetic code, genes and the structure of proteins. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was taught in 2.6. Therefore, the start of the lesson focuses on transcription and translation and students are guided through the use of the codon table to identify amino acids. Moving forwards, a quick quiz competition is used to introduce the names of three types of gene mutation whilst challenging the students to recognise terms which are associated with the genetic code and were met in the previous lesson. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution.
Calculating CARDIAC OUTPUT (Edexcel A-level Biology)
GJHeducationGJHeducation

Calculating CARDIAC OUTPUT (Edexcel A-level Biology)

(0)
This clear and concise lesson looks at the calculation of cardiac output as the product of stroke volume and heart rate. This engaging PowerPoint and accompanying resource have both been designed to cover point 7.9 (i) of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification which states that students should be able to calculate cardiac output. The lesson begins by challenging the students to recall that the left ventricle is the heart chamber with the thickest myocardial wall. This leads into the introduction of stroke volume as the volume of blood which is pumped out of the left ventricle each heart beat. A quick quiz game is used to introduce a normative value for the stroke volume and students are encouraged to discuss whether males or females would have higher values and to explain why. A second edition of this quiz reveals a normative value for resting heart rate and this results into the introduction of the equation to calculate cardiac output. A series of questions are used to challenge their ability to apply this equation and percentage change is involved as well. The final part of the lesson looks at the hypertrophy of cardiac muscle and students will look at how this increase in the size of cardiac muscle affects the three factors and will be challenged to explain why with reference to the cardiac cycle that was covered in an earlier topic.
Glycolysis (Edexcel A-level Biology)
GJHeducationGJHeducation

Glycolysis (Edexcel A-level Biology)

(0)
This fully-resourced lesson looks at the roles of glycolysis in aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover point 7.4 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. This lesson has been written to tie in with the other uploaded lessons on the Link reaction, Krebs cycle, oxidative phosphorylation and the production of lactate.
Krebs cycle (AQA A-level Biology)
GJHeducationGJHeducation

Krebs cycle (AQA A-level Biology)

(0)
This fully-resourced lesson looks at the series of oxidation-reduction reactions that form the Krebs cycle and focuses on the products in terms of reduced NAD, FAD and ATP. The engaging PowerPoint and accompanying resource have both been designed to cover the fifth part of point 5.2 of the AQA A-level Biology specification. The lesson begins with a version of the Impossible game where students have to spot the connection between 8 of the 9 terms and will ultimately learn that this next stage is called the Krebs cycle. The main part of the lesson challenges the students to use descriptions of the main steps of the cycle to continue their diagram of the reactions. Students are continually exposed to key terminology such as decarboxylation and dehydrogenation and they will learn where carbon dioxide is lost and reduced NAD and FAD are generated. They will also recognise that ATP is synthesised by substrate level phosphorylation. The final task challenges them to apply their knowledge of the cycle to work out the numbers of the different products and to calculate the number of ATP that must be produced in the next stage This lesson has been designed to tie in with the other uploaded lessons on glycolysis, anaerobic respiration, the Link reaction and oxidative phosphorylation.
Glycolysis (AQA A-level Biology)
GJHeducationGJHeducation

Glycolysis (AQA A-level Biology)

(0)
This fully-resourced lesson looks at the details of glycolysis as the first stage of aerobic and anaerobic respiration and explains how the sequence of reactions results in glucose being converted to pyruvate. The engaging PowerPoint and accompanying differentiated resources have been designed to cover the second part of point 5.2 of the AQA A-level Biology specification which states that students should know glycolysis as the phosphorylation of glucose and the production and subsequent oxidation of triose phosphate. The lesson begins with the introduction of the name of the stage and then explains how the phosphorylation of the hexoses and the production of the ATP, coenzymes and pyruvate are the stages that need to be known for this specification. Time is taken to go through each of these stages and key points such as the use of ATP in phosphorylation are explained so that students can understand how this affects the net yield. A quick quiz competition is used to introduce NAD and the students will learn that the reduction of this coenzyme, which is followed by the transport of the protons and electrons to the cristae for the electron transport chain is critical for the overall production of ATP. Understanding checks, in a range of forms, are included throughout the lesson so that students can assess their progress and any misconceptions are immediately addressed. This lesson has been written to tie in with the other uploaded lessons on anaerobic respiration and the different stages of aerobic respiration (the Link reaction, Krebs cycle and oxidative phosphorylation)
Link reaction (AQA A-level Biology)
GJHeducationGJHeducation

Link reaction (AQA A-level Biology)

(0)
This clear and concise lesson looks at the role of the Link reaction in the conversion of pyruvate to acetyl coenzyme A which will then enter the Krebs cycle. The PowerPoint has been designed to cover the fourth part of point 5.2 of the AQA A-level Biology specification which states that students should know about this conversion and the production of reduced NAD The lesson begins with a challenge, where the students have to recall the details of glycolysis in order to form the word matrix. This introduces the key point that this stage occurs in this part of the mitochondria and time is taken to explain why the reactions occur in the matrix as opposed to the cytoplasm like glycolysis. Moving forwards, the Link reaction is covered in 5 detailed bullet points and students have to add the key information to these points using their prior knowledge as well as knowledge provided in terms of NAD. The students will recognise that this reaction occurs twice per molecule of glucose and a quick quiz competition is used to test their understanding of the numbers of the different products of this stage. This is just one of the range of methods that are used to check understanding and all answers are explained to allow students to assess their progress. This lesson has been written to tie in with the other uploaded lessons on glycolysis and the Krebs cycle and oxidative phosphorylation.
Structure of DNA (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of DNA (CIE International A-level Biology)

(0)
This lesson looks at the detailed structure of DNA and builds on the knowledge from topic 1 to explain how this nucleic acid differs in the nucleus, mitochondria and chloroplasts of eukaryotic cells and in prokaryotic cells. Both the engaging PowerPoint and accompanying resources have been designed to cover the first part of point 6.1 (b) of the CIE International A-level Biology specification. As well as focusing on the differences between the DNA found in these two types of cells which includes the length, shape and association with histones, the various tasks will ensure that students are confident to describe how this double-stranded polynucleotide is held together by hydrogen and phosphodiester bonds. These tasks include exam-style questions which challenge the application of knowledge as well as a few quiz competitions to maintain engagement.
Topics 4.1, 4.2 & 4.3 (AQA A-level Biology)
GJHeducationGJHeducation

Topics 4.1, 4.2 & 4.3 (AQA A-level Biology)

9 Resources
Each of the 9 lessons which are included in this bundle have been written to specifically cover the content as detailed in topics 4.1, 4.2 and 4.3 of the AQA A-level Biology specification. The wide range of activities will maintain engagement whilst supporting the explanations of the biological knowledge to allow the students to build a deep understanding of genetic information Lessons which cover the following specification points are included in this bundle: DNA in prokaryotes and eukaryotes Genes Genome, proteome and the structure of RNA Transcription and splicing Translation The genetic code Gene mutations Chromosome mutations Meiosis If you would like to see the quality of the lessons, download the structure of DNA, RNA and gene mutations lessons as these have been uploaded for free
Transcription (CIE International A-level Biology)
GJHeducationGJHeducation

Transcription (CIE International A-level Biology)

(0)
This detailed lesson explains how the process of transcription results in the production of messenger RNA (mRNA). Both the detailed PowerPoint and accompanying resource have been designed to specifically cover the first part of point 6.2 (d) of the CIE International A-level Biology specification. The lesson begins by challenging the students to recall that most of the nuclear DNA in eukaryotes does not code for polypeptides. This allows the promoter region and terminator region to be introduced, along with the structural gene. Through the use of an engaging quiz competition, students will learn that the strand of DNA involved in transcription is known as the template strand and the other strand is the coding strand. Links to previous lessons on DNA and RNA structure are made throughout and students are continuously challenged on their prior knowledge as well as they current understanding of the lesson topic. Moving forwards, the actual process of transcription is covered in a 7 step bullet point description where the students are asked to complete each passage using the information previously provided. An exam-style question is used to check on their understanding before the final task of the lesson looks at the journey of mRNA to the ribosome for the next stage of translation. This lesson has been written to challenge all abilities whilst ensuring that the most important details are fully explained.
Structure of RNA (CIE International A-level Biology)
GJHeducationGJHeducation

Structure of RNA (CIE International A-level Biology)

(0)
This lesson focuses on the structure of RNA and specifically the similarities and differences between this nucleic acid and DNA. The engaging and detailed PowerPoint and accompanying resource have been designed to cover the second part of point 6.1 (b) of the CIE International A-level Biology specification which states that students should be able to describe the structure of this nucleic acid. Students were introduced to the detailed structure of a nucleotide and DNA in previous lessons, so this lesson is written to tie in with those and continuously challenge prior knowledge as well as the understanding of the current topic. The lesson begins with the introduction of RNA as a member of the family of nucleic acids and this enables students to recognise that this polynuclotide shares a number of structural features that were previously seen in DNA. A quiz round called “A FAMILY AFFAIR” is used to challenge their knowledge of DNA to recognise those features that are also found on RNA such as the chain of linked nucleotides, pentose sugars, nitrogenous bases and phosphodiester bonds. The next task pushes them to consider features that have not been mentioned and therefore are differences as they answer a structured exam-style question on how RNA differs from DNA. Students will learn that RNA is shorter than DNA and this leads into the final part of the lesson where mRNA and tRNA are introduced and again they are challenged to use the new information explain the difference in size. Brief details of transcription and then translation are provided so that students are prepared for the upcoming lessons on protein synthesis
Topics 6.1 & 6.2: Nucleic acids & protein synthesis (CIE International A-level Biology)
GJHeducationGJHeducation

Topics 6.1 & 6.2: Nucleic acids & protein synthesis (CIE International A-level Biology)

6 Resources
Each of the 6 lessons which are included in this bundle have been written to specifically cover the content as detailed in topics 6.1 & 6.2 of the CIE International A-level Biology specification. The wide range of activities will maintain engagement whilst supporting the explanations of the biological knowledge to allow the students to build a deep understanding of nucleic acids and protein synthesis Lessons which cover the following specification points are included in this bundle: Structure of DNA and RNA Genes as base sequences that code for polypeptides Gene mutations Transcription Translation If you would like to see the quality of the lessons, download the lesson on gene mutations as this have been uploaded for free
Transcription factors (AQA A-level Biology)
GJHeducationGJHeducation

Transcription factors (AQA A-level Biology)

(0)
This fully-resourced lesson explains how the transcription of target genes can be stimulated or inhibited by transcription factors. Both the PowerPoint and the accompanying resources have been designed to cover the first part of point 8.2.2 of the AQA A-level Biology specification and links are continuously made throughout the lesson to the topic of protein synthesis which was covered in topic 4.2. The lesson begins with a recall of the meaning of the terms genome and proteome so that a discussion can begin on whether a cell wants to express every gene and produce all of the possible proteins all of the time. As the answer to this is no, the idea of transcription factors is introduced. In order to fully understand this topic, students need to recall that the role of the promoter region is to bind RNA polymerase to initiate transcription. Students will learn that the factors have a DNA-binding domain and that some also have ligand-binding domains which allow molecules like hormones to bind. Moving forwards, the students are introduced to a group of substances called DELLA proteins which inhibit plant development. The way that transcription begins once the inhibition by the proteins has been removed is similar to the action of oestrogen and students are able to use this information as a guide during the final task where they have to order the sequence of events that take place once this steroid hormone binds to its transcription factor.
Transformed host cells (AQA A-level Biology)
GJHeducationGJHeducation

Transformed host cells (AQA A-level Biology)

(0)
This detailed and engaging lesson looks at the culture of transformed host cells as an in vivo method to amplify DNA fragments. Both the PowerPoint and accompanying resources have been designed to cover the third part of point 8.4.1 of the AQA A-level Biology specification and ties in with the previous two lessons in this sub-topic on producing DNA fragments and the polymerase chain reaction. The lesson begins with the introduction of the terms transgenic and transformed. Students will learn that bacterial cells are the most commonly transformed cells so the next task challenges their recall of the structures of these cells so that plasmid DNA can be examined from that point onwards. A quick quiz competition is used to introduce the key term, vector, and then the rest of the lesson looks at the details of the five steps involved in the transformation of the host cell: Remove and prepare the plasmid to act as a vector Insert the DNA fragment into the vector Transfer the recombinant plasmid into the host cell Identify the cells which have taken up the recombinant plasmid All the transformed host cells to replicate and express the novel gene Time is taken to explore the finer details of each step such as the addition of the promoter and terminator regions, use of the same restriction enzyme to cut the plasmid as was used to cut the gene and the different types of marker genes. Links are continuously made to the previous lessons in this topic so that students feel confident to answer assessment questions which bring in knowledge from all of the sections.
Topic 6.2: Protein synthesis (CIE International A-level Biology)
GJHeducationGJHeducation

Topic 6.2: Protein synthesis (CIE International A-level Biology)

4 Resources
Each of the 4 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 6.2 (Protein synthesis) of the CIE International A-Level Biology specification. The specification points that are covered within these lessons include: A polypeptide is coded for by a gene A gene mutation is a change in the sequence of nucleotides Sickle cell anaemia results from a change in the amino acid sequence Transcription as the production of mRNA from DNA Information on DNA is used during translation to construct polypeptides The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the introduction to gene mutations lesson as this has been shared for free
PCR (AQA A-level Biology)
GJHeducationGJHeducation

PCR (AQA A-level Biology)

(0)
This lesson looks at the use of the polymerase chain reaction (PCR) as an in vitro method to amplify DNA fragments as part of the recombinant DNA technology process. The clear PowerPoint has been designed to cover the second part of point 8.4.1 of the AQA A-level Biology specification. A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss the identity of the enzyme involved and to recall the action of this enzyme. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so the next part of this lesson looks at these particular temperatures so the important parts of each of the steps can be understood. Time is taken to examine the key points in detail, such as the specific DNA polymerase that is used and how it is not denatured at the high temperature as well as the involvement of the primers.
Topic 4.2: DNA and protein synthesis (AQA A-level Biology)
GJHeducationGJHeducation

Topic 4.2: DNA and protein synthesis (AQA A-level Biology)

3 Resources
Each of the 3 lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 4.2 (DNA and protein synthesis) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: The concept of the genome and the proteome The structure of mRNA The structure of tRNA Transcription as the production of mRNA from DNA The differences between the outcome of transcription in porkaryotes and eukaryotes Splicing Translation as the production of polypeptides from the sequence of codons on mRNA The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within this topic and earlier topics If you would like to see the quality of the lessons, download the structure of RNA lesson as this has been shared for free
Translation (AQA A-level Biology)
GJHeducationGJHeducation

Translation (AQA A-level Biology)

(0)
This detailed lesson describes the role of the mRNA, tRNA, amino acids and the ribosome during the second stage of protein synthesis - translation. Both the PowerPoint and accompanying resources have been designed to cover the third part of point 4.2 of the AQA A-level Biology specification and ties in with the previous lessons in this topic on RNA and transcription. Translation is a topic which is often poorly understood and so this lesson has been written to enable the students to understand how to answer the different types of questions by knowing and including the key details of the structures involved. The lesson begins by challenging the students to consider why it is so important that the amino acids are assembled in the correct order during the formation of the chain. Moving forwards, a quick quiz round called “LOST IN TRANSLATION” is used to check on their prior knowledge of the mRNA strand, the tRNA molecules, the genetic code and the ribosomes. The next task involves a very detailed description of translation that has been divided into 14 statements which the students have to put into the correct order. By giving them a passage that consists of this considerable detail, they can pick out the important parts to use in the next task where they have to answer shorter questions worth between 3 and 4 marks. These types of questions are common in the assessments and by building up through the lesson, their confidence to answer this type should increase. The final two tasks of the lesson involve another quiz, where the teams compete to transcribe and translate in the quickest time before using all that they have learnt to answer some questions which involve the genetic code and the mRNA codon table.
AQA GCSE Combined Science FOUNDATION TIER REVISION (Papers 1 - 6)
GJHeducationGJHeducation

AQA GCSE Combined Science FOUNDATION TIER REVISION (Papers 1 - 6)

6 Resources
This bundle of 6 revision lessons challenges the students on their knowledge of the content of topics B1 - B7, C1 - C10 and P1 - P7 of the AQA GCSE Combined Science specification which will be assessed on the 6 terminal GCSE papers. Specifically, the range of tasks which include exam-style questions (with displayed answers), quiz competitions and discussion points, have been designed for students taking the FOUNDATION TIER papers but could also be used with students taking the higher tier who need to ensure that the key points are embedded on some topics. The majority of the tasks are differentiated 2 or 3 ways so that a range of abilities can access the work whilst remaining challenged by the content. If you would like to see the quality of these lessons, download the paper 2 and 5 revision lessons as these have been shared for free.
Gene mutations and protein structure (AQA A-level Biology)
GJHeducationGJHeducation

Gene mutations and protein structure (AQA A-level Biology)

(0)
A fully-resourced lesson, which explores how changes to the sequence of bases on DNA may or may not alter protein structure. The engaging PowerPoint and accompanying resources have been designed to cover point 8.1 of the AQA A-level Biology specification and it builds on the knowledge gained during topic 4 when gene mutations were first introduced. A quiz runs throughout the lesson where students compete to recognise key terms from their definitions and the lesson begins with an edition of this round as they are challenged to recognise the definition for primary structure. Other terms that arise during the lesson relate to the different gene mutations, the genetic code and mutagenic agents. The focus of the lesson is to support students in their explanations of how a particular mutation can result in a change in the primary structure as well as being able to explain why a substitution mutation may not. In this way, their understanding of the degenerate and non-overlapping nature of the genetic code will be tested and any misconceptions can be addressed. The main section of the lesson covers substitution, deletion and addition mutations before translocation, inversion and duplication mutations are introduced. Links are made to the latter parts of topic 8 so students can understand how the change in the sequence of bases may disrupt gene expression. The final part of the lesson looks at a range of mutagenic agents that can increase the rate of mutation.