Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1235k+Views

2041k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Plant hormones
GJHeducationGJHeducation

Plant hormones

(0)
A fully-resourced lesson which looks at how auxins are involved in the response to the stimuli and gravity. The lesson includes an engaging lesson presentation (29 slides) and associated worksheets which have been differentiated. The lesson begins by challenging students to consider the different stimuli that a plant will respond to. There is focus throughout the lesson on the use of key terminology and students will start immediately by meeting the different types of tropisms. A quick competition is used to introduce the students to auxins and the key details of these chemicals are discussed. They will see how they are produced in the tips of shoots and roots and cause cell elongation in the shoots. A summary task is used to get the students to explain how a plant grow towards a light source. The next task challenges the students to apply their knowledge as a range of experimental data is shown to them and they have to predict how the plant would respond and explain - this task has been differentiated two ways so those students who need extra assistance can access the learning. The final part of the lesson looks at gravitropism and all of the learning is brought together to explain how the shoots grow away and the roots towards. This lesson has been written for GCSE students.
Transpiration (GCSE)
GJHeducationGJHeducation

Transpiration (GCSE)

(0)
An engaging lesson presentation (34), accompanied by a summary worksheet, which together explore the factors which change the rate of transpiration and focuses on the explanation behind each factor. The lesson begins by introducing the term, transpiration, and linking this to the structure of a leaf to ensure that students know that water is lost as water vapour out of the stomata. Students are provided with an analogy of plants being like clothes on a washing line to challenge them to come up with some of the factors involved. Time is taken to look specifically at humidity as this is a factor which is commonly misunderstood. Moving forwards, students are challenged to draw sketch graphs to predict whether increasing each of these factors will increase the rate of transpiration or decrease it. A series of questions to lead to answers is used to show the students how to explain the effect of increasing the light intensity. The remainder of the lesson looks at a potometer and how it can be used to calculate the rate. The mathematical skills of the students are challenged during a range of tasks and then linked back to the Science so they can recognise which features of plants will help to reduce water loss. Progress checks are written into this lesson at regular intervals to allow students to assess their understanding and a number of quick competitions act to maintain engagement. This lesson has been written for GCSE students but is suitable for A-level students who are studying the plants topic
Organ transplants
GJHeducationGJHeducation

Organ transplants

(0)
An engaging and informative lesson presentation (40 slides) that looks at the different steps that have to be taken when trying to identify potential donors for organ transplants. Links are made throughout the lesson to related topics such as the human defence systems and blood groups. The lesson begins by challenging the students to use their knowledge of the body’s defences to explain why closely matching tissues is critical when choosing a donor. Moving forwards, students will see how the four blood groups in the ABO system need to receive certain bloods and can only be given to certain others. There is a brief discussion of the HLA antigens and why this needs to be matched. The remainder of the lesson focuses on immuno-suppressant drugs and the advantages and disadvantages to individuals of taking these drugs. Progress checks have been written into the lesson at regular intervals to allow the students to constantly assess their understanding and any misconceptions to be addressed. This lesson has been written for GCSE students
Non-communicable diseases
GJHeducationGJHeducation

Non-communicable diseases

(0)
An informative lesson presentation (38 slides) that looks at a range of non-communicable diseases and also explores how risk factors can increase the chances of an individual having one of these diseases. The lesson begins by looking at CHD so that students can recognise that this is a non-communicable disease and check on their understanding of this key term. Moving forwards, a step by step question and answer format is used to show students how to form a long answer. Key terminology such as thrombosis and atherosclerosis are introduced using quick quiz competitions which act to maintain the engagement. The rest of the lesson focuses on a range of risk factors for cardiovascular diseases and time is taken to deepen knowledge of the human anatomy by challenging students to link the names of arteries to the organs that they supply. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be addressed. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
Communicable diseases
GJHeducationGJHeducation

Communicable diseases

(0)
An engaging lesson presentation (70 slides) which covers a range of communicable diseases which are caused by each of the four pathogens and discusses how the spread of these diseases can be prevented. The lesson begins by challenging the students to make the link between communicable diseases and pathogens and ensures that they are comfortable with protoctists as this is a pathogen that a lot of them will not have met or at least known the name for. Moving forwards, a focus is given to each pathogen, looking at why they are so effective at causing disease and also looks at examples of diseases that they cause. A range of quiz competitions are used to introduce key terms and maintain engagement. The remainder of the lesson focuses on how the spread of these communicable diseases can be prevented and attempts are made to link to other topics such as contraception. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be immediately addressed. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but can be used with both younger and older students.
Enzymes and enzyme action
GJHeducationGJHeducation

Enzymes and enzyme action

(0)
An engaging and detailed lesson presentation (53 slides) and associated worksheets that looks at the properties and functions of enzymes and explores how the rate of enzyme-controlled reactions changes with changes in conditions. The lesson begins by using a quick quiz competition to introduce the key terms of active site and substrate. Diagrams accompany the important descriptions so that students can visualise how enzymes are specific to a single substrate and will form enzyme-substrate complexes with only them. Emil Fischer’s lock and key hypothesis is briefly discussed so that the correlation between the hypothesis and key terms can be made. Students are shown how most enzymes or groups of enzymes can be named by remembering two rules and they will be tested on this through a second competition. At this point, a progress check is used to allow the students to assess their understanding and ability to bring the information together for enzyme function. The rest of the lesson looks at how changing the temperature and pH will affect the rate of an enzyme controlled reaction. Students will meet the graph shapes that accompany both of these factors and then are helped with the explanation of the trend which is normally poorly done in exam questions. This lesson has been designed for GCSE students.
Inheritance of dominant and recessive alleles
GJHeducationGJHeducation

Inheritance of dominant and recessive alleles

(0)
A detailed lesson presentation and associated question worksheet which uses a step by step guide and numerous worked examples to show students how to draw genetic crosses to calculate offspring percentages. Before students are able to draw genetic diagrams, they need to understand and be able to use genetic terminology so this is the focus for the start of the lesson. Time is taken to go over the meaning of dominant and recessive alleles, genotypes and phenotypes. Moving forwards, students will be challenged to link genotypes to phenotypes for both dominant and recessive disorders and common misconceptions such as carriers in recessive disorders are explained. Finally, a 5 step guide is used to walk students through drawing genetic diagrams. Students are then given a chance to apply their new-found knowledge to questions about the inheritance of cystic fibrosis and polydactyly. Progress checks have been written into the lesson at regular intervals so that students can assess their understanding. This lesson has been designed for GCSE students but is perfectly suitable for A-level students who are studying the topic of monogenic inheritance
The NITROGEN Cycle - GCSE
GJHeducationGJHeducation

The NITROGEN Cycle - GCSE

(0)
An engaging and detailed lesson presentation (31 slides) that looks at how nitrogen is cycled and focuses on the different bacteria who play key roles in this cycle. The lesson begins by exploring why nitrogen is so critical for living organisms for the synthesis of DNA and proteins. Students are introduced to nitrogen-fixing bacteria to start and challenged to use their knowledge of interdependence to state the type of ecological relationship that is formed between them and the leguminous plant that they live on. Each stage of the cycle is complimented by a diagram highlighting that part so students are able to visualise how the cycle comes together. Time is taken to ensure that students recognise that any non-leguminous plants can only absorb nitrogen when it is nitrates form from the soil. Moving forwards, students will meet decomposers and nitrifying bacteria and again be shown where their function fits into the cycle. As the final part of the learning, students are challenged to consider what else is needed in order for this to be a cycle and will meet the denitrifying bacteria as a result. Progress checks, in a range of forms, have been written into this lesson at regular intervals so that students can assess their understanding and any misconceptions can be immediately addressed. This lesson has been written for GCSE students, but could be used with A-level students who want to have a recap before extending their knowledge further.
Negative feedback
GJHeducationGJHeducation

Negative feedback

(0)
An informative lesson presentation (20 slides) and associated worksheet that looks at how negative feedback loops act as a final control in homeostatic mechanisms. This is a topic which is poorly understood by students at both GCSE and even A-level, so whilst designing this lesson, the focus was on a few key points and applying it to a range of actual examples. Students will see how a negative feedback loop is used in the control of adrenaline release and temperature regulation and they will also be shown what would happen if this loop didn’t exist. Students are then challenged to apply their knowledge by putting the order of the regulation of metabolic rate into the correct order. The final part of the lesson briefly looks at how positive feedback loops also exist by using the example of the release of oxytocin during birth. This lesson has primarily been designed for GCSE students but is suitable for A-level Biology students too.
Animal & Plant cells (Eukaryotic cells)
GJHeducationGJHeducation

Animal & Plant cells (Eukaryotic cells)

(0)
An engaging lesson presentation (31 slides) and associated worksheet that looks at animal and plant cells as eukaryotic cells. The lesson focuses on the organelles which are found inside these two cells and ensures that students understand the difference between the cells as well as briefly looking at the difference to prokaryotic cells at the end of the lesson. There is a lot of key terminology involved in this topic, so a range of tasks including fun quiz competitions are used to introduce these terms in an engaging manner. The lesson is student based, with the emphasis on them to identify the functions of the different organelles as well as recognising which ones are found in both cells or just plant cells. Discussions are encouraged during the lesson with leading questions, such as questioning whether a red blood cell isn’t actually an eukaryotic cell because of the lack of nucleus. Progress checks have been written into the lesson at regular intervals during the lesson so that students can assess their understanding. This lesson has been written for GCSE students but could be used with KS3 students who are looking to extend their knowledge beyond the basics that they will be taught at this level.
Decomposers
GJHeducationGJHeducation

Decomposers

(0)
A fully-resourced lesson which looks at how decomposers are involved with the process of decay. The lesson includes an engaging and detailed lesson presentation (31 slides) and an associated differentiated worksheets. The lesson begins by displaying the definitions for decomposers and detritivores and challenging students to use their bingo cards to see if they can work out the words which are being described. Students will learn how these two types of organisms work together to break down matter. Moving forwards, a worked example is used to guide students through how to calculate the rate of decay from a range of different data types. Students will be challenged to act like a travel agent for decomposers to come up with the different conditions that they require. Finally, they have to bring all of the new-found knowledge together to answer a range of summary questions. These questions are differentiated two ways so that differing abilities can access the work. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students (14 - 16 year olds in the UK)
Development of DRUGS
GJHeducationGJHeducation

Development of DRUGS

(0)
A thought-provoking lesson presentation (34 slides) that looks at each of the stages in the development of drugs and considers the potential issues that arise at each of the stages. The lesson begins by ensuring that the students know the scientific definition of a drug and then they will be told how much is spent by the NHS alone each year on medicinal drugs so they can recognise the importance of this topic. Moving forwards, each stage in the development is considered in the appropriate detail. Students are challenged to consider some stages from both a scientific angle and a business angle so they can understand why certain animals are chosen for the testing. Key terms such as placebo and double blind trial are introduced and discussion time is written into the lesson so that insightful questions can be posed by all. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but could be used with KS3 students who might be carrying out research or a project on the topic of drugs.
ADRENALINE
GJHeducationGJHeducation

ADRENALINE

(0)
A concise, engaging lesson presentation (22 slides) which looks at the different responses of the body as a result of adrenaline release. In line with the actions of adrenaline, the lesson begins with a range of quiz competitions to introduce key terms and responses to the students. Once the students know that it causes both the breathing and heart rate to increase, they are challenged to complete a passage which brings this information together to explain how the increased respiration rate is related to the fight or flight tag line. Moving forwards, students will be introduced to the meaning of the term vasodilation and then asked to consider which organs will need extra blood flow during times of stress and conversely, which tissues can have blood directed away from them. The lesson finishes by looking at how a negative feedback loop is used as the final control to ensure that energy resources are not wasted during times when there is no stress.
The THYROID GLAND
GJHeducationGJHeducation

The THYROID GLAND

(1)
A fully-resourced lesson which explores how the release of thyroxine from the thyroid gland regulates the metabolic rate and how a negative feedback loop is used as the final control. This lesson includes an engaging and detailed presentation (19 slides), a crossword and an understanding check task. The lesson begins by challenging the students knowledge of the endocrine system to get them to come up with the letters that form the name, “thyroid gland”. Students will be reminded that this gland releases thyroxine which is involved with the regulation of the metabolic rate. Students will learn that in order for the thyroid gland to release this hormone, it has to be stimulated by TSH from the pituitary gland which in turn was controlled by the hypothalamus. At this point, the students are challenged to put the order of the control mechanism in the right order on their worksheet. This leads them to the word negative which links to how a negative feedback loop is used as the final act in the mechanism. This lesson is designed for GCSE students but is suitable for A-level students too who need to know about this endocrine gland and also negative feedback
STEM CELLS
GJHeducationGJHeducation

STEM CELLS

(0)
An engaging lesson presentation which looks at the two types of animal stem cells, exploring their important differences and briefly looking at their potential uses in medicine. The lesson begins by looking at the meaning of the term differentiation and then challenging students to draw a simple conclusion once they know that stems cells are undifferentiated cells. Time is taken to look into this part of the knowledge in depth but then students are given the key points which must be understood for them to move forwards. Students are told that there are two types of animal stem cells before a quiz competition is used to get them to predict which one of the two is being described by the clues. The answers to the competition then have to be used to write a summary passage about the two types. Students are also told that stem cells exist in plants in the form of meristem cells. Finally, Parkinson’s disease and Diabetes mellitus Type I are used as examples of conditions that could be potentially treated with stem cells.
Increasing BIODIVERSITY
GJHeducationGJHeducation

Increasing BIODIVERSITY

(0)
A resourced lesson which looks at a range of methods that are used to increase biodiversity. The lesson includes an engaging lesson presentation (31 slides) and an associated worksheet The lesson begins by getting students to recall the term biodiversity and time is taken to ensure that the meaning of this word is fully understood. The lesson takes the form of a bus ride around London, looking at some of the attractions which act to increase or maintain biodiversity. Students will “virtually” visit both London Zoo and Kew Gardens and will learn how methods such as the captive breeding programme and the Millenium Seed Bank are used to influence biodiversity. Along with the bus ride, students will compete in a number of quiz competitions which act to maintain engagement whilst introducing key terms or facts. There are regular progress checks throughout the lesson to allow the students to check their understanding. This lesson has been designed for GCSE students.
Understanding GENETIC TREES
GJHeducationGJHeducation

Understanding GENETIC TREES

(0)
A fully-resourced lesson which guides students through using genetic trees to work out the genotypes of unknown individuals and also how to work out whether a condition is caused by a dominant or a recessive allele. This lesson includes a detailed lesson presentation (24 slides) and a series of differentiated questions to allow the students to try to apply their new-found knowledge. The lesson begins by challenging students to recall the meaning of the key terms, genotype and phenotype. Time is taken initially to explain how genetic trees can be used in questions. Lots of useful hints are given throughout the lesson, such as filling in the genotypes for those that you already know like the affected in a recessive condition. Moving forwards, a worked example is used to talk the students through a question. Students are then given the opportunity to try a question and this has been differentiated so those who need extra assistance can still access the work. The remainder of the lesson shows the students how they can use the tree to work out whether the condition is caused by a dominant or recessive allele and again a progress check is used so students can assess their understanding. This lesson has been designed for both GCSE and A-level students.
Structure of the NERVOUS SYSTEM
GJHeducationGJHeducation

Structure of the NERVOUS SYSTEM

(0)
A resourced lesson which looks at the organisation of the human nervous system and explores how these structures are involved in nervous reactions. The lesson includes an engaging lesson presentation (27 slides) and an associated worksheet with an understanding check. The lesson begins by looking at different examples of stimuli and therefore introducing the key term, receptors, as structures which detect these changes in the environment. Moving forwards, a quiz competition is used to introduce the students to the abbreviations CNS and PNS and students will learn the structures that are found in these parts. At this stage of the lesson, a quick understanding check is written into the lesson to see whether students know the functions of each of the structures and check whether they can order them correctly from stimuli to effectors. Students will meet the term synapse and be taught that the conduction across these gaps is slow so that this knowledge can be applied in future lessons on reflexes. The remainder of the lesson challenges the students to apply their new-found knowledge in ordering an example of a nervous reaction.
Cell differentiation and specialisation
GJHeducationGJHeducation

Cell differentiation and specialisation

(0)
An engaging lesson presentation (39 slides) which explores how cells differentiate in order to specialise to become more effective at carrying out a particular function. This lesson focuses on five cells - red blood cells, sperm cells, fat cells, ciliated cells and palisade cells. The lesson begins by challenging the mathematical skills of the students as they have to convert the number 37 trillion into standard form. Students will learn that although all of the cells found in a human would be eukaryotic animal cells, they wouldn’t all be the same. They are introduced to the key term differentiation through a quiz competition and time is taken to ensure that students understand how this process leads to specialisation. The remainder of the lesson concentrates on looking at the function and features of the five cells. Quiz competitions are used throughout to maintain engagement whilst ample time is given to student discussion where they are challenged to consider why a cell would have specialised in such a way. Key terminology is consistently used so that students are not caught off guard in an exam question when this specialist language is used. Regular progress checks are written into the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but could be used with higher ability KS3 students who are looking to extend their knowledge on the topic of cells.
Surface area to volume ratio
GJHeducationGJHeducation

Surface area to volume ratio

(16)
An engaging lesson presentation (16 slides) which looks at the surface area to volume ratio and ensures that students can explain why this factor is so important to the organisation of living organisms. This is a topic which is generally poorly misunderstood by students and therefore time has been taken to design an engaging lesson which highlights the key points in order to encourage greater understanding. The lesson begins by showing students the dimensions of a cube and two answers and challenges them to work out what the questions were that produced these answers. Students are shown how to calculate the surface area and the volume of an object before it is explained how this can then be turned into a ratio. Time is taken at this point to ensure that students can apply this new-found knowledge as they have to work out which of the three organisms in the “SA: V OLYMPICS” would stand aloft the podium. Students are given the opportunity to draw conclusions from this task so that they can recognise that the larger the organism, the lower the surface area to volume ratio. The lesson finishes by explaining how larger organisms, like humans, have adapted in order to increase the surface area at important exchange surfaces in their bodies. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but is perfectly suitable for A-level students who want to look at this topic from a basic level