Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Spearman's rank correlation coefficient (OCR A-level Biology)
GJHeducationGJHeducation

Spearman's rank correlation coefficient (OCR A-level Biology)

(0)
This lesson describes how to use the Spearman’s rank correlation coefficient to consider the relationship between two sets of data. The PowerPoint and accompanying exam-style question are part of the final lesson in a series of 3 which have been designed to cover point 4.2.2 (f) of the OCR A-level Biology A specification. The previous two lessons described the different types of variation and explained how to calculate the standard deviation and how to use the Student’s t-test to compare two means. As with the previous lesson, a step by step guide is used to walk the students through the use of the formula to generate the rank coefficient and to determine whether there is a positive correlation, no correlation or a negative correlation. The students are also reminded of the null hypothesis and will be shown how to accept or reject this hypothesis and to determine significance. The students will work through an example with the class and then are given the opportunity to apply their newly-acquired knowledge to an exam-style question. The mark scheme is displayed on the PowerPoint so they can assess their understanding
t-test (CIE A-level Biology)
GJHeducationGJHeducation

t-test (CIE A-level Biology)

(0)
This lesson describes the t-test can be used to compare the variation of two different populations. The detailed PowerPoint and accompanying resources have been designed to cover point 17.1 [c] of the CIE A-level Biology specification and also explains how to calculate the standard deviation to measure the spread of a set of data as this value is needed in the t-test formula A step by step guide walks the students through each stage of the calculation of the standard deviation and gets them to complete a worked example with the class before applying their knowledge to another set of data in an exam-style question. This data looks at the birth weights of humans on one day in the UK and this is used again later in the lesson to compare against the birth weights of babies in South Asia when using the t-test. The null hypothesis is introduced and students will learn to accept or reject this based upon a comparison of their value against one taken from the table based on the degrees of freedom.
Maths in A-level Biology (OCR A-level Biology)
GJHeducationGJHeducation

Maths in A-level Biology (OCR A-level Biology)

8 Resources
The mathematical element of the OCR A-level Biology A specification is substantial and every year, there are a large number of exam questions that require the application of a range of mathematical skills. Therefore, a clear understanding of how and when to apply these skills is closely related to success on this course and the following calculations are covered by the 9 lessons that are included in this bundle: Using the chi-squared test to determine significance between the observed and expected results of a genetic cross Using the Hardy Weinberg principle to calculate the frequency of an allele or a genotype in a population Calculating the standard deviation to measure the spread of data Using the Student’s t-test to compare the means of two sets of data Calculating the temperature coefficient Calculating the proportion of polymorphic gene loci Using and interpreting Simpson’s index of diversity to calculate the biodiversity of a habitat Using the Spearman’s rank correlation coefficient to consider the relationship of the data The use and manipulation of the magnification formula A revision lesson is also included in this bundle which acts as a fun and engaging revision of the range of calculations
Standard deviation & the Student's t-test (OCR A-level Biology A)
GJHeducationGJHeducation

Standard deviation & the Student's t-test (OCR A-level Biology A)

(0)
This lesson describes how to calculate the standard deviation to measure the spread of a set of data and to compare means using the t-test. The detailed PowerPoint and accompanying resources have been designed to cover the part of point 4.2.2 (f) of the OCR A-level Biology A specification that includes these two statistical tests. A step by step guide walks the students through each stage of the calculation of the standard deviation and gets them to complete a worked example with the class before applying their knowledge to another set of data. This data looks at the birth weights of humans on one day in the UK and this is used again later in the lesson to compare against the birth weights of babies in South Asia when using the student’s t-test. The null hypothesis is introduced and students will learn to accept or reject this based upon a comparison of their value against one taken from the table based on the degrees of freedom.
Topic 4.5: Transport of gases in blood (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4.5: Transport of gases in blood (Edexcel A-level Biology B)

3 Resources
The 3 lessons contained within this lesson bundle cover the content as detailed in topic 4.5 of the Edexcel A-level Biology B specification. The lesson PowerPoints and accompanying worksheets are filled with lots of different tasks that cover the specification points shown below whilst engaging and motivating the students with exam-style questions, guided discussion periods and quiz competitions. TOPIC 4.5: Transport of gases in blood The structure of haemoglobin in relation to its role in the transport of respiratory gases, including the Bohr effect Understand the oxygen dissociation curve of haemoglobin Understand the similarities and differences between the structures and functions of haemoglobin and myoglobin Understand the significance of the oxygen affinity of foetal haemoglobin as compared to adult haemoglobin
Tissue fluid (Edexcel A-level Biology B)
GJHeducationGJHeducation

Tissue fluid (Edexcel A-level Biology B)

(0)
This lesson describes how tissue fluid is formed and reabsorbed and also describes the role of the lymphatic system in the return of fluid to the blood. The detailed PowerPoint and accompanying resources have been designed to cover points 4.6 (i & ii) of the Edexcel A-level Biology B specification and explains how a combination of the effects of hydrostatic pressure and oncotic pressure results in the formation of tissue fluid in animals. The lesson begins with an introduction to the arteriole and venule end of a capillary as these will need to be considered as separate entities when describing the formation of tissue fluid. A quick quiz competition introduces a value for the hydrostatic pressure at the arteriole end and students are challenged to first predict some parts of the blood will move out of the capillary as a result of the push from the hydrostatic pressure and this allows oncotic pressure to be initially explored. The main part of the lesson uses a step by step guide to describe how the net movement is outwards at the arteriole end before students will use this guidance to describe what happens at the venule end. In the concluding part of the lesson, students will come to recognise oedema as a condition where tissue fluid accumulates and they again are challenged to explain how this occurs before they finally learn how the fluid is returned to the circulatory system as lymph.
Haemoglobin vs myoglobin (Edexcel A-level Biology B)
GJHeducationGJHeducation

Haemoglobin vs myoglobin (Edexcel A-level Biology B)

(0)
This lesson describes the similarities and differences between the structure and function of haemoglobin and myoglobin. The PowerPoint and accompanying resource have been designed to cover point 4.5 (iii) of the Edexcel A-level Biology B specification Students have already covered the structure and function of haemoglobin in topics 1.3 and 4.5, so this concise lesson has been planned to challenge that knowledge. Students are introduced to myoglobin and will learn that this is an oxygen-binding protein found in the skeletal muscle tissue. Therefore the first part of the lesson focuses on slow twitch muscle fibres, where the content of myoglobin is high, and this presents an opportunity for links to be made to respiration, mitochondria and capillaries. The main part of the lesson challenges the students to compare the two proteins on structure and function including the number of polypeptide chains and affinity for oxygen and students can assess their understanding through use of the displayed mark schemes to the series of exam-style questions.
Limiting reactants & stoichiometry (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Limiting reactants & stoichiometry (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson describes how the limiting reactant controls the mass of the product formed and explains how to deduce the stoichiometry. The PowerPoint and accompanying worksheet, which is differentiated, have been designed to cover points 1.52 & 1.53 of the Edexcel GCSE Chemistry specification and also covers those points in the Chemistry section of the Combined Science course. Step by step guides are used to go through worked examples so students are able to visualise how to set out their work. The lesson begins with a fun analogy involving sausages and potatoes so that students can identify that the potatoes limited the sale of food. Alongside this, students will learn the key term excess. Some time is then taken to ensure that students can spot the limiting reactant and the one in excess in actual chemical reactions and method descriptions. Moving forwards, students will be guided through two calculations that involve limiting reactants - those to calculate the theoretical yield and the other to calculate a balanced symbol equation. Other skills involved in these calculations such as calculating the relative formula mass are recalled and a few examples given to ensure they are confident. The question worksheet has been differentiated two ways so that any students who need extra assistance can still access the learning.
The mole & mole calculations (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

The mole & mole calculations (Edexcel GCSE Chemistry & Combined Science)

(2)
This lesson describes meaning of the mole and shows how this measurement is used in a range of calculations. The clear lesson PowerPoint presentation and accompanying question worksheet have been designed to cover points 1.50 & 1.51 of the Edexcel GCSE Chemistry specification and also covers those points in the Chemistry section of the Combined Science course. This lesson has been specifically written to explain the concept in a concise manner so that the key details are understood and embedded. Students are shown how to recognise when a mole calculation requires them to use Avogadro’s constant and when they should the formula including the relative formula mass.
Concentration of solutions (Edexcel GCSE Chemistry)
GJHeducationGJHeducation

Concentration of solutions (Edexcel GCSE Chemistry)

(0)
This fully-resourced lesson describes how to calculate the concentration of solution in grams per decimetres cubed and mol per decimetre cubed. The lesson PowerPoint and accompanying questions which are differentiated have been designed to cover points 1.49 & 5.8 of the Edexcel GCSE Chemistry specification. The lesson begins by introducing students to volumes in decimetres cubed and time is taken to ensure that students are able to convert to this measurement from volumes in centimetres cubed. Moving forwards, students are shown how to calculate the concentration in both units through the use of worked examples and then they are challenged to apply this to a series of exam-style questions which have been differentiated so students of differing abilities can access the work
Empirical formula (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Empirical formula (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson describes how the empirical formula of a compound can be deduced from the masses of the different parts. The PowerPoint and accompanying resources have been designed to cover points 1.44 & 1.45 of the Edexcel GCSE Chemistry specification and also covers those points in the Chemistry section of the Combined Science course. This lesson uses a step-by-step guide to walk students through the method involved in calculating the empirical formula. Students are given a template to use as they are introduced to the questions and then encouraged to work without it as the lesson progresses. The students are shown how empirical formula questions can be made more difficult and hints are given so that students are able to tackle them and access all of the marks available.
Law of conservation of mass (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Law of conservation of mass (Edexcel GCSE Chemistry & Combined Science)

(2)
This lesson explains the law of conservation of mass and applies this law to a closed system and a non-enclosed system. The PowerPoint and accompanying resources have been designed to cover point 1.48 of the Edexcel GCSE Chemistry specification and also covers that point in the Chemistry section of the Combined Science course. The lesson begins by introducing the law of the conservation of mass. Students will learn that they can expect questions which challenge them to prove that mass is conserved through the use of the relative formula mass. Therefore, the next section of the lesson focuses on the skills associated with this calculation and looks at more different formulae such as those with brackets. Students are given an opportunity to check their skills before trying to prove mass is conserved in three chemical reactions. All questions have displayed mark schemes so that students can assess their understanding. The rest of the lesson looks at instances of when the mass of the reactants does not equal the mass of the products. A practical method for the decomposition of copper carbonate is provided if the teacher wants to use it, so that students can collect results which show this difference in mass. Discussions are encouraged in order to get students to offer explanations as to why the mass of the products is lower. Once the gas has been identified, students are further challenged to consider apparatus that could be used to collect and record the results to again prove conservation
Relative formula mass (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Relative formula mass (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson describes how to calculate the relative formula mass from simple chemical formulae and for those that include brackets. The PowerPoint and the accompanying worksheet have been designed to cover point 1.43 of the Edexcel GCSE Chemistry specification and also covers that point in the Chemistry section of the Combined Science course. The lesson contains a wide range of tasks, understanding checks and quick quiz competitions to guide students through calculating the relative formula mass for substances with a range of chemical formulae. The relative formula mass is required in a lot of calculations, such as those that involve moles, so it is an important skill to get right. Worked examples are used throughout the lesson to visualise the metho for the students. Initially, students will learn how to calculate the mass from simple formulae before helpful hints are provided for harder formulae such as those that contain a bracket. Students are given the chance to apply their knowledge by proving that mass is conserved in a reaction and this prepares them for an upcoming lesson. This lesson has been written for GCSE students but could be used with higher ability KS3 students in lessons that are looking to push knowledge forward
Formulae of ionic compounds (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Formulae of ionic compounds (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson describes how the chemical formula of an ionic compound can be deduced using the formulae of the constituent ions. The PowerPoint and accompanying worksheet have been designed to cover point 1.26 of the Edexcel GCSE Chemistry specification and also cover the same point in the Chemistry section of the Combined Science course. This lesson builds on the knowledge acquired in previous lessons when students learnt how to identify the charge of an ion based on the group of the atom. A step by step guide is used to show them how the transfer method can be used to write the formulae for compounds including halides and oxides. Time is taken to introduce the formulae for sulphate, carbonate, hydroxide and nitrate ions and the students are shown how brackets may be needed when writing formulae for compounds containing these ions. Understanding checks in the form of questions and quiz competitions are used to allow the students to assess their progress
-ide & -ate compounds (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

-ide & -ate compounds (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson explains how to use the endings -ide and -ate when naming compounds. The lesson PowerPoint and accomapnying worksheet have been designed to cover point 1.25 of the Edexcel GCSE Chemistry specification and also covers that point in the Chemistry section of the Combined Science course The lesson begins with some simple multiple choice questions to check that students can spot the chemical symbol and definition of an element, but more importantly pick out the formula for a compound. Time is taken to go through the explanation of why substances are elements or compounds and specific examples given. A quick understanding check, in the form of a competition called “To COM or NOT TO COM”,is used to check that students can identify elements or compounds from a name or given formula. The remainder of the lesson focuses on naming compounds. Students are challenged to spot a pattern when presented with the names of two compounds, which contain 2 elements only. For both compounds that contain 2 elements or 3 or more, the rules to naming are introduced before examples are shown so that students can visualise how to construct their answer. They are then given an opportunity to apply this to a number of questions in the set tasks. The last part of the lesson moves this forward by looking at how these same rules can be applied when the chemical formula of a compound is given and this is related to another topic as they are challenged to write a word equation containing a range of compounds when presented with the symbol equation. Progress checks are written into the lesson at regular intervals so that students can constantly assess their understanding. Although this is written for Edexcel GCSE students, it is perfectly suitable for use with younger students who are learning about elements, compounds and mixtures and the teacher wants to push them onwards
Formation of ions (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Formation of ions (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson describes an ion as an atom with a positive or negative charge, and explains how cations and anions are formed in ionic compounds. The lesson PowerPoint and accompanying worksheet have been designed to cover points 1.22 - 1.24 of the Edexcel GCSE Chemistry specification and also covers the same points on the Combined Science course. The first part of the lesson focuses on atoms and specifically on getting students to recall that they contain the same number of protons and electrons and this is why they have no overall charge. By ensuring that they are confident with this fact, they will be able to understand why ions have a charge. Students will learn that ions have full outer shells of electrons and this change in the number of this sub-atomic particle leads to the charge. They are shown examples with aluminium and oxide ions and then are challenged to apply this new-found knowledge to a task where they have to explain how group 1, 2, 5 and 7 atoms become ions. The final part of the lesson looks at how ion knowledge can be assessed in a question as they have to recognise the electron configuration of one and describe how many sub-atomic particles are found in different examples. There are regular progress checks throughout the lesson to allow the students to check on their understanding. This lesson has been written for GCSE students but could be used with higher ability KS3 students who are looking to extend their knowledge past basic atomic structure
Ionic bonds & compounds (Edexcel GCSE Chemistry & Combined Science)
GJHeducationGJHeducation

Ionic bonds & compounds (Edexcel GCSE Chemistry & Combined Science)

(0)
This lesson explains how ionic bonds are formed to form ions and describes the structure of an ionic compound. The engaging lesson PowerPoint and accompanying resources have been designed to cover points 1.21 and 1.27 of the Edexcel GCSE Chemistry specification and this also covers those points on the Combined Science specification. The lesson begins by introducing the name of the type of bond, but does not go into any more detail at this stage. This is because the lesson is designed to allow the students to discover that in order for both of the atoms involved to get a full outer shell, electrons have to be transferred from one to the other. Over the course of the lesson, students will recognise that it is the metal that loses the electrons and becomes a positive ion whilst the non-metal gains the electrons and becomes a negative ion. There are lots of discussion and discovery points like this written into the lesson so that students can take ownership for their learning. Students are guided through drawing dot and cross diagrams to represent these compounds and as a result links are made to the topics of naming compounds, writing chemical formulae, forming ions and electron configurations. There are a number of quick competitions in the lesson which introduce new terms to the students. One such competition introduces the term lattice and the lesson builds from here to understand why ionic compounds have high melting and boiling points. Moving forwards, students will also learn that solid ionic compounds cannot conduct electricity whilst those in molten form or in an aqueous solution are able to. The final task of the lesson challenges the students to bring all of the information together they have seen to draw a dot and cross diagram for aluminium oxide, explain how it was formed and then explain how aluminium is extracted from this compound by electrolysis. This final task has been differentiated so that students who need extra assistance can still access the learning. This lesson has been written for GCSE aged students but could be used with higher ability younger students who are pushing on with the elements, compounds and mixtures topic
Module 4: Biodiversity, evolution and disease (OCR A-level Biology A)
GJHeducationGJHeducation

Module 4: Biodiversity, evolution and disease (OCR A-level Biology A)

16 Resources
The detailed content, exam-style questions, guided discussion points and quiz competitions that are found in each of the 16 paid lessons that are included in this bundle (as well as the 5 free lessons which are named at the bottom) cover the following specification points in module 4 of the OCR A-level Biology A specification: Module 4.1.1 The different types of pathogen that can cause communicable diseases in plants and animals The means of transmission of animal and plant communicable pathogens The primary non-specific defences against pathogens in animals The structure and mode of action of phagocytes The structure, different roles and modes of action of B and T lymphocytes in the specific immune response The primary and secondary immune responses The structure and general functions of antibodies An outline of the action of opsonins, agglutinins and anti-toxins The differences between active and passive immunity, and between natural and artificial immunity Autoimmune diseases The principles of vaccination Module 4.2.1 How biodiversity can be considered at different levels The random and non-random sampling strategies that are carried out to measure the biodiversity of a habitat How to measure species richness and species evenness The use and interpretation of Simpson’s Index of Diversity How genetic biodiversity may be assessed The ecological, economic and aesthetic reasons for maintaining biodiversity In situ and ex situ methods of maintaining biodiversity International and local conservation agreements made to protect species and habitats 4.2.2 The biological classification of species The binomial system of naming species and the advantage of such a system The features used to classify organisms into the five kingdoms The evidence that has led to new classification systems The different types of variation Using the standard deviation to measure the spread of a set of data Using the Student’s t-test to compare means of data values of two populations Using the Spearman’s rank correlation coefficient to consider the relationship of the data The different types of adaptations to their environment The mechanism by which natural selection can affect the characteristics of a population over time How evolution in some species has an impact on human populations If you would like to get an idea of the quality of the lessons that are included in this bundle, then download the following five OCR A lessons which have been uploaded for free: Immunity & vaccinations Reasons for maintaining biodiversity Taxonomic hierarchy and the binomial naming system Adaptations and natural selection Transmission of animal and plant pathogens
Topic 17: Selection and evolution (CIE A-level Biology)
GJHeducationGJHeducation

Topic 17: Selection and evolution (CIE A-level Biology)

8 Resources
This bundle contains 8 detailed and engaging lessons, and together they cover a lot of the key content of topic 17 in the CIE A-level Biology specification. Selection and evolution are key processes in Biology but are not always well understood or well explained by students. With this in mind, these lessons have been designed to support students in making links between the different concepts. The following specification points are covered by these lessons: The differences between continuous and discontinuous variation Using the t-test to compare the variation of two different populations The importance of genetic variation in selection Natural selection Environmental factors can act as stabilising, disruptive and directional forces in natural selection Selection, the founder effect and genetic drift affect allele frequencies in populations Using the Hardy-Weinberg principle The molecular evidence that reveals similarities between closely related organisms Allopatric and sympatric speciation If you would like to sample the quality of lessons in this bundle then download the following lessons as these have been shared for free continuous and discontinuous variation molecule evidence and evolution
Molecular evidence & evolution (CIE A-level Biology)
GJHeducationGJHeducation

Molecular evidence & evolution (CIE A-level Biology)

(1)
This lesson describes how molecular evidence can be used to reveal similarities between closely-related organisms. The PowerPoint and accompanying resources have been primarily designed to cover point 17.3 (b) of the CIE A-level Biology specification and focus on the comparison of protein structure and mitochondrial DNA but can also be used as a revision of related topics that include protein synthesis and gene mutations. The lesson begins with the introduction of convergent evolution, a process where organisms independently evolve to have similar features due to theeir habitation of similar environments. This allows the importance of molecular evidence to be considered to ensure that organisms which are closely related (in terms of evolution) are recognised. The comparison of the primary structure of a protein involved in respiration (cytochrome c) is used to demonstrate how protein sequence data can be useful. At this point, a series of exam-style questions are used to challenge the students on their knowledge of protein synthesis and gene mutations from topics 6 and 16. The remainder of the lesson considers the use of mitochondrial DNA and a study of the mtDNA genomes of 51 gibbons demonstrates how this can provide evidence of relationships, even in organisms that show high taxonomic diversity like these lesser apes.