Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1133k+Views

1936k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The Autonomic Nervous System
GJHeducationGJHeducation

The Autonomic Nervous System

(0)
This is an engaging lesson that looks at the structures and actions of the two parts of the autonomic nervous system (ANS) and shows students where this particular system fits into the whole organisation of the nervous system. The lesson begins by introducing the students to the idea that motor neurones are not simply somatic motor neurones but will actually be classified as autonomic motor neurones if they innervate the involuntary muscles. A range of tasks, progress checks and quick competitions are used during the lesson to engage the students in this topic and show them how it relates to other topics such as motor neurones and neurotransmitters. Key terminology is used throughout, such as ganglions, so that students can recognise and access the marks if an exam question on this topic arises. This lesson has been written for A-level students
Sensory and motor neurones
GJHeducationGJHeducation

Sensory and motor neurones

(0)
This is a fast-paced lesson that explores the structural differences (and similarities) between sensory and motor neurones. The lesson uses a range of tasks, progress checks and quick competitions to enable the students to recognise how these neurones differ in terms of the cell body, axon and dendron. Students will also understand that both neurones are myelinated which allows saltatory conduction to occur. Relay neurones are briefly discussed during the final section of the lesson. This lesson has primarily been designed for A-level students but can be used with the content means that it is suitable for use with GCSE students too who are studying the nervous system.
The BLOOD VESSELS (OCR A-level Biology)
GJHeducationGJHeducation

The BLOOD VESSELS (OCR A-level Biology)

(0)
This fully-resourced lesson explores how the structure of arteries, arterioles, capillaries, venules and veins relate to their functions. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 3.1.2 © of the OCR A-level Biology A specification. This lesson has been written to build on any prior knowledge from GCSE or earlier in this topic to enable students to fully understand why a particular type of blood vessel has particular features. Students will be able to make the connection between the narrow lumen and elastic tissue in the walls of arteries and the need to maintain the high pressure of the blood. A quick version of the GUESS WHO game is used to introduce smooth muscle and collagen in the tunica media and externa and again the reason for their presence is explored and explained. Moving forwards, it is quite likely that some students will not be aware of the transition vessels that are the arterioles. This section begins with an understanding of the need for these vessels because the structural and functional differences between arteries and capillaries is too significant. The action of the smooth muscle in the walls of these vessels is discussed and students will be challenged to describe a number of situations that would require blood to be redistributed. The middle part of the lesson looks at the role of the capillaries in exchange and links are made to diffusion to ensure that students can explain how the red blood cells pressing against the endothelium results in a short diffusion distance. The remainder of the lesson considers the structure of the veins and students are challenged to explain how the differences to those observed in arteries is due to the lower blood pressure found in these vessels. It is estimated that it will take at least 2 hours of allocated A-level Biology teaching time to cover the detail included in this lesson
Topic P6.1: Physics on the move (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6.1: Physics on the move (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers most of the content in sub-topic P6.1(Physics on the move) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include: Everyday motion Reaction time and thinking distance Stopping distances All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Everyday motion
GJHeducationGJHeducation

Everyday motion

(1)
This is a fully-resourced lesson that guides students through the range of calculations involved in calculating speeds in everyday situations. This lesson includes an informative lesson presentation (27 slides) and a question worksheet which has been differentiated two ways. The lesson begins by showing the students a speed camera and challenging them to recall the equation that would be used to calculate the speed as well as asking them to explain where the distance and the time values would come from. This lesson has a high mathematical element to it, to run in line with the questions that were seen in the latest exams this summer. Students will be expected to convert between units and rearrange formula. In this example, students are challenged to convert between m/s and mph in order to determine which of three drivers will receive a speeding ticket for exceeding the limit. This task has been differentiated so that students who find the conversions difficult are given some assistance so they can still access the learning. Moving forwards, students will see how a sensor on a tyre of a bicycle can also be used to calculate the speed by working out the circumference of the tyre to determine the distance. The final part of the lesson gets students to convert between m/s and mph and the other way to find out some typical speeds of everyday motion such as walking, running or a train moving. This lesson has been written for GCSE aged students but could be used with younger students of high ability who need an extra challenge in the calculating speed topic.
Transformers
GJHeducationGJHeducation

Transformers

(0)
This is a fully-resourced lesson that looks at the role of transformers in the National Grid, explains why they increase or decrease potential difference and then uses the given equation to calculate potential difference or the number of turns on the primary or secondary coil. This lesson includes an informative lesson presentation (25 slides) and two question worksheets. The lesson begins by introducing the devices that are transformers and showing the students that there are two types, step-up and step-down. Students will learn that step-up transformers increase the potential difference and step-down transformers decrease the potential difference. Moving forwards, a series of calculations are used to get the students to understand why these changes in potential difference occur. Students are guided through this section so that they are able to complete a summary passage about the roles of these devices. They will then be shown the equation connecting potential difference and number of turns which they do not need to recall but have to apply. Again, a worked example is used to visualise how workings should be set out before students are challenged to answer two sets of questions, the second of which involves the use of a second equation. Progress checks like these are found at regular intervals throughout the lesson so that students can assess their understanding. This lesson has been written for GCSE students
Topic P6.1: Radioactive emissions (OCR Gateway A GCSE Physics)
GJHeducationGJHeducation

Topic P6.1: Radioactive emissions (OCR Gateway A GCSE Physics)

6 Resources
This bundle of 6 lessons covers all of the content in the sub-topic P6.1 (Radioactive emissions) of the OCR Gateway A GCSE Physics specification. The topics covered within these lessons include: Atoms and isotopes The properties of alpha, beta and gamma radiation Nuclear decay equations Half-life Background radiation All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P6: Radioactivity (OCR Gateway A GCSE Physics)
GJHeducationGJHeducation

Topic P6: Radioactivity (OCR Gateway A GCSE Physics)

8 Resources
This bundle of 8 lessons covers a lot of the content in Topic P6 (Radioactivity) of the OCR Gateway A GCSE Physics specification. The topics covered within these lessons include: Atoms and Isotopes The properties of alpha, beta and gamma radiation Nuclear equations Half-life Background radiation Irradiation and contamination Nuclear fission All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P8: Global challenges (OCR Gateway A GCSE Physics)
GJHeducationGJHeducation

Topic P8: Global challenges (OCR Gateway A GCSE Physics)

9 Resources
This bundle of 9 lessons covers a lot of the content in Topic P8 (Global challenges) of the OCR Gateway A GCSE Physics specification. The topics and specification points covered within these lessons include: Everyday motion Reaction time and thinking distance Braking distance and stopping distance Energy sources Using resources The National Grid Mains electricity The Big Bang Satellites and orbits All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P6: Global challenges (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6: Global challenges (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 6 lessons covers the majority of the content in Topic P6 (Global challenges) of the OCR Gateway A GCSE Combined Science specification. The topics and specification points covered within these lessons include: Everyday motion Explain methods of measuring human reaction times and recall typical results Explain the factors which affect stopping distance The main energy sources available on Earth The differences between renewable and non-renewable energy sources The use of transformers to increase and decrease potential difference The National grid and mains electricity The differences in function of the wires in a three core cable All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Irradiation and contamination
GJHeducationGJHeducation

Irradiation and contamination

(1)
This is a fully-resourced lesson that explores the meaning of irradiation and contamination and challenges the students to make links to the different types of radiation in order to state which type of radiation is most dangerous outside of the body and inside the body. This lesson includes an engaging lesson presentation (28 slides) and a differentiated worksheet which gives assistance to those students who find the task of writing the letter difficult. The lesson has been written to include real life examples to try to make the subject matter more relevant to the students. Therefore, whilst meeting the term contamination, they will briefly read about the incident with Alexander Litvinenko in 2006 to understand how the radiation entered the body. Moving forwards, students will learn that there are examples of consensual contamination such as the injection of an isotope to act as a tracer. At this point of the lesson, links are made to the topic of decay and half-lives and students are challenged to pick an appropriate isotope based on the half-life and then to write a letter to the patient explaining why they made their choice. The remainder of the lesson challenges students to decide which type or types of radiation are most dangerous when an individual is irradiated or contaminated and to explain their answers. This type of progress check can be found throughout the lesson along with a number of quick competitions which act to maintain engagement as well as introduce new terms. This lesson has been written for GCSE aged students
Reaction time
GJHeducationGJHeducation

Reaction time

(0)
This is a detailed lesson which looks at the topic of reaction times and guides students through calculating a reaction time using the results of the well known ruler-drop test. In addition, students will see how reaction times can be applied in athletics but also in the calculation of the thinking distance for drivers. The lesson includes an engaging lesson presentation (32 slides) and a student task worksheet. The lesson begins by introducing the key term, reaction time, and teaching students that the average reaction time is 0.2 seconds. Moving forwards, a step by step guide is used to show the students how to take the value for distance travelled by a ruler in the drop test and use the equations of motion and change in velocity equation to calculate the reaction time. There is a large mathematical element to the lesson which challenges the students ability to rearrange formula, convert between units and leave answers to a specified number of significant figures. The answers and methods in obtaining these are always displayed at the end of each task so that the students can assess their understanding and recognise where errors were made if any were. Students will have to follow the provided method to obtain 5 results in the ruler drop test and ultimately find out their own reaction time. The remainder of the lesson looks at how the thinking distance at different speeds can be calculated. This lesson has been written for GCSE students due to the high maths content but could be used with younger students of high ability.
Topic P5.1:  Wave behaviour (OCR Gateway A GCSE Physics)
GJHeducationGJHeducation

Topic P5.1: Wave behaviour (OCR Gateway A GCSE Physics)

4 Resources
This bundle of 4 lessons covers the majority of the content in sub-topic P5.1 (Wave behaviour) of the OCR Gateway A GCSE Physics specification. The topics and specification points covered within these lessons include: Waves and their properties Wave velocity Sound properties and uses All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P2.1: Motion (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P2.1: Motion (OCR Gateway A GCSE Combined Science)

6 Resources
This bundle of 6 lessons cover all of the content in the sub-topic P2.1 (Motion) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include: Measuring distance and time to calculate speed Conversion from non S.I. units to S.I. units Be able to distinguish between scalar and vector quantities Relate changes in motion to distance-time and velocity-time graphs Calculate distance travelled from a velocity-time graph Calculate average speed for non-uniform motion Apply the equations of motion Calculating acceleration Calculating kinetic energy All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P3.2: Simple circuits (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P3.2: Simple circuits (OCR Gateway A GCSE Combined Science)

9 Resources
This bundle of 9 lessons covers all of the content in the sub-topic P3.2 (Simple circuits) of the OCR Gateway A GCSE Combined Science specification. The topics covered within these lessons include: The differences between series and parallel circuits Represent direct current circuits with the common electrical symbols Current and the dependence on resistance and potential difference Recall and apply the relationship between I, V and R The graphs for thermistors and LDRs Diodes Net resistance Current, potential difference and resistance calculations in series and parallel circuits Power transfer in a circuit Applying the equations to do with electrical circuits All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P4.3: Radioactivity (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P4.3: Radioactivity (OCR Gateway A GCSE Combined Science)

7 Resources
This bundle of 7 lessons covers most of the content in sub-topic P4.3 (Radioactivity) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include: Atomic nuclei Isotopes Unstable nuclei and emitting particles or gamma rays Writing balanced equations to represent decay The concept of the half-life The different penetrating powers of alpha, beta and gamma Recall the differences between irradiation and contamination All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P6.2: Powering Earth (OCR Gateway A GCSE Combined Science)
GJHeducationGJHeducation

Topic P6.2: Powering Earth (OCR Gateway A GCSE Combined Science)

3 Resources
This bundle of 3 lessons covers most of the content in sub-topic P6.2(Powering Earth) of the OCR Gateway A GCSE Combined Science specification. The topics or specification points covered within these lessons include: The main energy sources available for use on Earth Patterns and trends in the use of energy resources The use of transformers to increase or decrease potential difference The National grid The differences in function between the live, neutral and earth wires All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Topic P4: Properties of waves, including light and sound (Cambridge iGCSE Science Double Award)
GJHeducationGJHeducation

Topic P4: Properties of waves, including light and sound (Cambridge iGCSE Science Double Award)

7 Resources
This bundle of 8 lessons covers the majority of the content in Topic P4 (Properties of waves, including light and sound) of the core and supplement sections of the Cambridge iGCSE Science Double Award specification. The topics and specification points covered within these lessons include: The meaning of speed, frequency, wavelength and amplitude Distinguishing between transverse and longitudinal waves Understanding how waves can undergo reflection and refraction Reflection of light Refraction of light Describe total internal reflection The meaning of the critical angle Thin converging lens The main features of the EM spectrum The properties and uses of the EM waves The properties and uses of sound waves All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding
Surface area and the rate of reaction
GJHeducationGJHeducation

Surface area and the rate of reaction

(0)
This is a fast-paced lesson that looks at how particle size affects the rate of reaction and challenges the students to carry out a practical to obtain valid results to back up the theory. It is a fully-resourced lesson that consists of an engaging lesson presentation (19 slides) and a calculation worksheet which is differentiated two ways to enable those students who find the maths hard to have a way to access the learning. Students are guided through a method of calculating the surface area and volume of the object and calculating the surface area to volume ratio. Using the answers to their calculations, they will complete a summary passage which explains why having more exposed reacting particles leads to an increased rate of reaction. Students will then carry out a practical where they have to determine which cube of jelly to use to make jelly the fastest in order to test their summary passage is valid. This lesson has been designed for GCSE students but could be used with younger students looking at chemical reactions and investigating the factors that affect the rate.
The properties and uses of SOUND
GJHeducationGJHeducation

The properties and uses of SOUND

(0)
This is a fully-resourced lesson that uses a variety of tasks and quick competitions to look at what happens to sound waves when they hit a boundary and how these properties are utilised for numerous functions and appliances. This lesson includes an engaging and informative lesson presentation (32 slides) and a worksheet which is differentiated two ways to enable students who are finding the topic difficult a chance to access the learning. The lesson begins by looking at how sound waves can be reflected and how this is commonly known as an echo. Students are challenged to use a provided equation to calculate a distance by using the time that the echo of a shout takes to be heard in the Grand Canyon. Moving forwards, students will see how this idea of reflection can be used with ultrasound in the imaging of the foetus. At this stage, as the cover image shows, students are challenged to complete a doctor’s letter to an expectant mother who is concerned about the ultrasound procedure. Assistance is given in the form of a differentiated worksheet for those who find it difficult. Moving forwards, students will learn that sound waves can be refracted at a boundary, just as light waves can. Working with the teacher, they will use key terms to build up an exemplar definition to explain how this refraction occurs. This lesson has been designed for GCSE aged students.