Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1132k+Views

1935k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
OCR Gateway A GCSE Combined Science Module B5 (Genes, inheritance and selection) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science Module B5 (Genes, inheritance and selection) REVISION

(0)
An engaging lesson presentation (54 slides) that uses a variety of exam questions, quick tasks and competitions to allow students to assess their understanding of the different topics within Module B5 of the Combined Science specification. All of the exam questions have displayed answers and some are differentiated to allow for the differing abilities. The students will enjoy the competitions which include "Take the HOTSEAT" and "This shouldn't be too TAXING" whilst recognising those areas which require further attention.
Sexual reproduction
GJHeducationGJHeducation

Sexual reproduction

(1)
A concise lesson presentation (26 slides) that looks at how sexual reproduction leads to variation and considers the advantages and disadvantages of this form of reproduction. The lesson begins by getting the students to recognise that sexual reproduction needs two parents and therefore two gametes. Time is taken to ensure that students understand that these gametes are produced by meiosis and therefore contain the haploid number of chromosomes. Key terminology like haploid and zygote are used throughout the lesson. This lesson is suitable for both KS3 and GCSE students
Asexual reproduction
GJHeducationGJHeducation

Asexual reproduction

(0)
An engaging lesson presentation (33 slides) that looks at the key details of asexual reproduction, examines the process in bacteria and plants and also considers the advantages and disadvantages. The lesson begins by challenging the students to discuss whether reproduction always requires two (parents). Students will see how only one parent is involved in this type of reproduction and will focus on how it takes place in bacteria. Moving forwards, students will be introduced to the methods of runners, bulbs and tubers in plants. By making connections to natural selection, students will be challenged to think about the benefits of asexual reproduction. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson is suitable for both KS3 and GCSE students
Stem cells in medicine
GJHeducationGJHeducation

Stem cells in medicine

(0)
An engaging and informative lesson presentation (30 slides) that looks at some of the uses of stem cells in medicine. The lesson begins by challenging the students to define some key terms such as undifferentiated which are associated with these cells. Moving forwards, students will look at the uses of embryonic stem cells including in the treatment of Parkinson’s disease and for tests in drug trials. Students are challenged to consider for homework why the uses of these cells remains controversial. This lesson is designed for GCSE students
OCR A-Level Biology A Module 2 REVISION LESSONS
GJHeducationGJHeducation

OCR A-Level Biology A Module 2 REVISION LESSONS

6 Resources
This bundle contains 6 fully-resourced and detailed revision lessons that have been designed to cover the content of module 2 of the OCR A-level Biology A specification which concerns Foundations in Biology. The wide range of activities included in each lesson will engage the students whilst they assess their knowledge of the specification content. Most of the tasks are differentiated to allow differing abilities to access the work and be challenged. These are the modules covered: 2.1.1: Cell structure 2.1.2: Biological molecules 2.1.3: Nucleic acids 2.1.4: Enzymes 2.1.5: Biological membranes 2.1.6: Cell division, cell diversity and cellular organisation Each of these lessons uses exam questions (with explained answers), quick tasks and engaging quiz competitions to allow the students to recognise which areas of the specification need further attention If you want to see the quality of the lessons before purchasing then the 2.1.2 and 2.1.6 revision lessons are free resources to download
OCR A-level Biology Module 2 (Foundations in Biology) REVISION
GJHeducationGJHeducation

OCR A-level Biology Module 2 (Foundations in Biology) REVISION

(0)
A detailed and engaging lesson presentation (74 slides) which consists of a series of exam questions, quick tasks and competitions to enable the students to assess their understanding of the topics found within Module 2. All of the exam questions have displayed mark schemes with explanations so that students can recognise errors and misconceptions and address them. Students will thoroughly enjoy the numerous competitions which include "Name the 007 bonds" and "Biology catchphrase".
OCR A-level Biology Module 6.1.3 Manipulating Genomes) REVISION
GJHeducationGJHeducation

OCR A-level Biology Module 6.1.3 Manipulating Genomes) REVISION

(0)
An engaging lesson presentation (43 slides) that uses exam questions, quick tasks and competitions to enable students to assess their understanding of the topics within module 6.1.3 of the OCR A-Level Biology A specification. All of the exam questions have displayed mark schemes and explanations so that students can recognise any errors or misconceptions. Competition rounds included in this lesson are "From numbers 2 letters" and "Is this SEQUENCED correctly".
Kidney failure and its potential treatments (OCR A-level Biology A)
GJHeducationGJHeducation

Kidney failure and its potential treatments (OCR A-level Biology A)

(0)
This is a fully-resourced lesson that covers the details of specification point 5.1.2 (e) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the effects of kidney failure and its potential treatments. This lesson consists of an engaging PowerPoint (55 slides) and associated differentiated worksheets that look at the diagnosis of a number of different kidney-related conditions and the potential treatments for kidney failure. This lesson is designed to get the students to take on the numerous roles of a doctor who works in the renal ward which include testing, diagnosis and treatment. Having obtained measurements by GFR and results by taking urine samples, hey are challenged to use their knowledge of the function of the kidney to study urine samples (and the accompanying GP’s notes) to diagnose one of four conditions. They then have to write a letter to the patient to explain how they made this diagnosis, again focusing on their knowledge of the structure and functions of the Bowman’s capsule and PCT. The rest of the lesson focuses on haemodialysis, peritoneal dialysis and kidney transplant. There are regular progress checks throughout the lesson so that students can assess their understanding and there are a number of homework activities included in the lesson. This lesson is designed for A-level students who are studying the OCR A-level Biology specification and ties in nicely with the other uploaded lessons on this organ which include the structure and function of the nephron, ultrafiltration, selective reabsorption and osmoregulation.
Pyrosequencing
GJHeducationGJHeducation

Pyrosequencing

(0)
A detailed lesson presentation (37 slides) and associated worksheets that guide students through the DNA sequencing method called pyrosequencing. The lesson focusses on the numerous enzymes and substrates which are involved in the cascade of events which eventually leads to the production of light when the conversion from luciferin to oxyluciferin occurs. A step by step guide is used to show the students how these events occur and the different outcomes are explored. There are regular progress checks throughout the lesson so that students can assess their understanding of this topic and the links to similar topics. This lesson has been designed for A-level students and above
Principles of DNA sequencing (OCR A-level Biology)
GJHeducationGJHeducation

Principles of DNA sequencing (OCR A-level Biology)

(0)
This detailed lesson describes the principles of DNA sequencing and has been designed to cover the first part of point 6.1.3 (a) of the OCR A-level Biology A specification. Fred Sanger’s chain termination method is used as the example to guide the students through the details of each step. The lesson begins with a focus on the common ingredients of the process such as DNA polymerase, DNA nucleotides and primers. Links are made to module 2.1.3 where nucleic acids were initially met through a series of prior knowledge check questions. Time is then taken to explain why these short lengths of synthesised nucleotides are necessary and this will support students when primers are met in the PCR and genetic engineering. Moving forwards, students will recognise how the modification to the nucleotide means that the chain terminates once a modified nucleotide is added into the sequence and that these have been radioactively labelled. Gel electrophoresis is introduced and an outline of the process given to provide knowledge to build on when this is encountered later in the module. A series of exam-style questions allow students to assess their understanding of this potentially difficult topic before students are encouraged to consider the limitations of the method so they are prepared to meet the new methods in upcoming lessons. A number of quiz competitions run throughout the lesson to maintain engagement and to introduce terms and values in a memorable way
OCR A-level Biology 2.1.3 REVISION (Nucleotides and nucleic acids)
GJHeducationGJHeducation

OCR A-level Biology 2.1.3 REVISION (Nucleotides and nucleic acids)

(1)
This is a detailed, engaging and fully-resourced REVISION LESSON which allows students of all abilities to assess their understanding of the content in module 2.1.3 (Nucleotides and nucleic acids) of the OCR A-level Biology A specification. Considerable time has been taken to design the lesson to include a wide range of activities to motivate the students whilst they evaluate their knowledge of DNA, RNA and the roles of these nucleic acids in DNA replication and protein synthesis. Most of the tasks have been differentiated so that students of differing abilities can access the work and move forward as a result of the tasks at hand. This lesson has been planned to cover as much of the specification as possible but the following sub-topics have received particular attention: The structure of DNA Phosphorylated nucleotides DNA replication Transcription and translation Gene mutations and their affect on the primary structure of a polypeptide The structure of RNA In addition to a focus on the current topic, links are made throughout the lesson to other topics such as the journey of an extracellular protein following translation and the cell cycle. If you like the quality of this revision lesson, please look at the other uploaded revision lessons for this module and for this specification
Plant defences
GJHeducationGJHeducation

Plant defences

(8)
An engaging lesson presentation (35 slides) that looks at the different physical and chemical defences that plants use to prevent infection by pathogens. There are clear links made between this topic and earlier plant topics, such as structure of plant cells and leaves, to check that knowledge is sound. Students will learn some examples of the chemical defences and be introduced to specific examples in plants. This lesson has been designed for GCSE students and includes a set homework as part of the lesson.
Plant diseases
GJHeducationGJHeducation

Plant diseases

(0)
A really engaging and detailed lesson presentation (44 slides) and associated differentiated worksheets that looks at communicable diseases in plants and challenges students to diagnose these diseases in plants. During the lesson the students will take on the role of the “Treeage” (triage) nurse and have to direct each plant to the correct ward in the “CASUALTREE” according to the pathogen which has infected them. They will also have to explain how the symptoms which they have identified were caused and explain the future for this plant, during their time as the “Tree surgeon”. The three diseases included in the lesson are tobacco mosaic virus, crown gall disease and powdery mildew disease. There are regular progress checks throughout the lesson so that students can assess their understanding and there is a set homework included as part of the lesson. This lesson has been designed for GCSE students but is also suitable for A-level students looking at the communicable diseases topic
Treating CVD
GJHeducationGJHeducation

Treating CVD

(0)
An engaging lesson presentation (30 slides) that looks at the different methods that are used to treat cardiovascular diseases. The lesson begins by looking at the surgical procedure of heart bypass before exploring the use of stents to widen a partially blocked artery. Links are made back to previous knowledge when discussing valves and students are challenged to explain why a faulty valve must be replaced. The rest of the lesson focusses on treating CVD with medicines such as statins and antiplatelets and students will learn the side-effects associated with these drugs. This lesson has been designed for GCSE students but is suitable for all ages
Monoclonal antibodies
GJHeducationGJHeducation

Monoclonal antibodies

(4)
An engaging lesson presentation (32 slides) and differentiated worksheets that look at the meaning of the substances termed monoclonal antibodies, explains how they are produced and explores their different applications. The lesson begins by breaking the term down into three parts so that students can understand that these substances are proteins that attach to antigens and come from a single clone of cells. Students will meet key terms such as lymphocytes, myelomas and hybridomas and will be able to link them to understand how these antibodies are produced. Moving forwards, time is taken to focus on the application of monoclonal antibodies in pregnancy tests. There are regular progress checks throughout the lesson so that students can assess their understanding and a set homework is included as part of the lesson. This lesson has been written for GCSE students but can be used with lower ability A-level students who are studying this topic
Double, closed circulatory system (OCR A-level Biology)
GJHeducationGJHeducation

Double, closed circulatory system (OCR A-level Biology)

(0)
This fully-resourced lesson looks at the type of circulatory system found in a mammal (double, closed) and considers how the pulmonary circulation differs from the systemic circulation. The engaging PowerPoint and accompanying resources have been designed to cover point 3.1.2 (b) of the OCR A-level Biology A specification The lesson begins with a focus on the meaning of a double circulatory system and checks that students are clear in the understanding that the blood passes through the heart twice per cycle of the body. Beginning with the pulmonary circulation, students will recall that the pulmonary artery carries the blood from the right ventricle to the lungs. An opportunity is taken at this point to check on their knowledge of inhalation and the respiratory system as well as the gas exchange between the alveoli and the capillary bed. A quick quiz is used to introduce arterioles and students will learn that these blood vessels play a crucial role in the changes in blood pressure that prevent the capillaries from damage. When looking at the systemic circulation, time is taken to look at the coronary arteries and renal artery as students have to be aware of these vessels in addition to the ones associated with the heart. In the final part of the lesson, students are challenged to explain how the structure of the heart generates a higher pressure in the systemic circulation and then to explain why the differing pressures are necessary. This lesson has been written to tie in with the other uploaded lessons from topic 3.1.2 (transport in animals)
Involuntary muscle
GJHeducationGJHeducation

Involuntary muscle

(1)
An engaging lesson presentation (36 slides) that looks at the three types of muscle that are found in the body and then focusses on the structure and features of the involuntary muscles, cardiac and smooth. The lesson begins by challenging the students to recall the names of the different types and then gets them to recognise that cardiac and smooth are able to contract without conscious thought. Moving forwards, time is taken to look at the details of these muscles and key terminology such as intercalated discs and gap junctions are introduced so that students can understand how they perform their different functions. There are regular progress checks throughout the lesson so that students can assess their understanding. This lesson has been designed for A-level Biology lessons.
Oxidative phosphorylation (OCR A-level Biology)
GJHeducationGJHeducation

Oxidative phosphorylation (OCR A-level Biology)

(0)
This clear and detailed lesson describes the process of oxidative phosphorylation, including the roles of the electron carriers, oxygen and the mitochondrial cristae and explains the role of chemiosmosis. The PowerPoint has been designed to cover points 5.2.2 (g) and (h) of the OCR A-level Biology A specification and includes details of the electron transport chain, proton gradients and ATP synthase. The lesson begins with a discussion about the starting point of the reaction. In the previous stages, the starting molecule was the final product of the last stage but in this stage, it is the reduced coenzymes which release their hydrogen atoms. Moving forwards, the process of oxidative phosphorylation is covered in 7 detailed steps and at each point, key facts are discussed and explored in further detail to enable a deep understanding to be developed. Students will see how the proton gradient across the inner membrane is created and that the flow of protons down the channel associated with ATP synthase results in a conformational change and the addition of phosphate groups to ADP by oxidative phosphorylation. Understanding checks are included throughout the lesson to enable the students to assess their progress and prior knowledge checks allow them to recognise the clear links to other topics and modules. This lesson has been written to tie in with the other uploaded lessons on glycolysis, the Link reaction and Krebs cycle and anaerobic respiration
The structure of the MITOCHONDRION (OCR A-level Biology)
GJHeducationGJHeducation

The structure of the MITOCHONDRION (OCR A-level Biology)

(0)
This detailed lesson looks at the structure of the mitochondrion and explains how the specific features allow the stages of aerobic respiration to take place in this organelle. The engaging PowerPoint and accompanying resource have been designed to cover point 5.2.2 (b) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the inner and outer mitochondrial membranes, cristae, matrix and mitochondrial DNA. The lesson begins with a version of “GUESS WHO” where students have to use a series of structural clues to whittle the 6 organelles down to just 1 - the mitochondrion. Moving forwards, the key components of the organelle are identified on a diagram. Students are introduced to the stages of respiration so that they can make a link to the parts of the cell and the mitochondria where each stage occurs. Students will learn that the presence of decarboxylase and dehydrogenase enzymes in the matrix along with coenzymes and oxaloacetate allows the Link reaction and the Krebs cycle to run. Finally, time is taken to introduce the electron transport chain and the enzyme, ATP synthase, so that students can begin to understand how the flow of protons across the inner membrane results in the production of ATP. This lesson has been designed to tie in with the other uploaded lessons on the stages of respiration.
Velocity-time graphs
GJHeducationGJHeducation

Velocity-time graphs

(0)
A detailed lesson presentation (37 slides) that looks at the different motions that are represented on a velocity-time graph and guides students through using these graphs to calculate the distance travelled by an object. The lesson begins by challenging the students to construct a velocity-time graph by using a displayed guide and using their knowledge of drawing a distance-time graph. Moving forwards, the students will match terms of motion to the lines on the graph and time is taken to make links to the physics equations that allow acceleration and deceleration to be calculated. Students will also learn that they can use a velocity-time graph to calculate the distance travelled. A worked example is used to show them how to tackle these questions. There are regular progress checks throughout the lesson so that students can assess their understanding of this topic. This lesson has been designed for GCSE students but could be used with higher ability KS3 students