Hero image

516Uploads

198k+Views

106k+Downloads

Investigate the photovoltaic effect
IETEducationIETEducation

Investigate the photovoltaic effect

(0)
Learn how photovoltaic cells work and investigate the photovoltaic effect In this engaging STEM activity, designed for secondary school students, learners will discover how photovoltaic cells work, how they differ from solar thermal cells, and they will investigate the photovoltaic effect. The ‘Photovoltaic cells’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a design and make activity in Design and Technology, with cross-curricular links with Science. This is a short activity which involves investigating the photovoltaic effect. It could be used as a starter activity in Electronics or Product Design within Design and Technology, or to provide students with extended background information during the design and make project. It could also be used as a starter in Science. Students will be given the ‘What is a photovoltaic cell’ handout. They should consider the following questions: How do photovoltaic cells differ from solar thermal cells? What commonly available products use photovoltaic cells? What are the advantages and disadvantages of photovoltaic cells? What factors would affect the positioning of a photovoltaic cell? Tools/resources required Internet access Ideally, small operational models of solar thermal and photovoltaic cells that the students can handle Suggested learning outcomes By the end of this activity students will be able to list the two types of solar panel and give examples of how they are used, and they will be able to explain how photovoltaic cells work. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Heating through the ages
IETEducationIETEducation

Heating through the ages

(0)
Consider history of energy sources and their pros and cons This lesson plan is designed to provide students with a comprehensive overview of the changing use and types of energy sources over time. It’s an engaging resource that delves into how and why the variety of energy sources used domestically have evolved, offering a broader context for understanding the development of new types of energy sources and the factors propelling these changes. Taking a journey through history, learners will see the evolution of energy sources, from primitive times to the present day. They’ll consider the advantages and disadvantages of different energy types and how technology and societal needs have influenced their adoption. This exploration will provide them with a foundation to understand the importance of new energy sources and the complexities involved in their development. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within science, maths and design and technology (DT). Activity: Considering the history of different types of energy sources and their pros and cons In this activity, students will create a timeline showcasing the development and implementation of a specific energy source. They’ll start by brainstorming different types of energy sources used throughout history, then discuss how these sources are used in homes. Each team will research their allocated energy source, noting key points in its development, what made it popular, and factors that made it less desirable. The engineering context Every new energy source represents a triumph of engineering – a solution to a problem, an improvement on what came before. This activity will show students how engineers have shaped our energy landscape throughout history. By understanding the challenges and triumphs in developing new energy sources, students will gain a deeper appreciation for the field of engineering and may be inspired to become the problem solvers of the future. Suggested learning outcomes By participating in this activity, students will gain the ability to illustrate how mankind’s energy sources have evolved over time. They’ll understand the factors that necessitated and facilitated the change in our energy sources, and why some alternative sources were adopted faster than others. This comprehensive understanding will enable them to appreciate the complexities of developing new energy sources, and the economic and environmental considerations involved. Download our activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Prosthetics and ethics
IETEducationIETEducation

Prosthetics and ethics

(0)
With the development of prosthetics progressing all the time, this engineering activity for kids will enable students to find out about the systems and controls, electronics and engineering behind the ever-advancing technologies in prosthetics and body centric communications. This is a great resource to create educational discussions on the ethics of medical robots, body centric antenna as well as prosthetics. Activity introduction Body centric communications have abundant applications in personal healthcare, smart homes, personal entertainment, identification systems, space exploration and military. This topic investigates the driving technology behind body centric communications, explores current health applications of these devices, possibilities for the future and the ethical issues surrounding these advancements. In this activity students are introduced to how the present body centric antenna, plus prosthetic technology, could be compared to science fiction ‘cyborgs’. Students will also be asked to discuss ethical issues around this idea. You could start the discussion by focusing on the positive achievements that are possible using BCAs and prosthetic devices. Then you could progress to the more sinister cyborg possibilities. Draw the discussion together in a plenary and seek a class consensus. Students can use different ethical positions to look at the issues. How would you consider the issues from a utilitarian viewpoint? How about from rights-based, moral duty or selfish ethical positions? As an extension you can run a debate getting the students to adopt contrasting ethical standpoints in favour for and against Cybermen. The engineering context Body centric communications refers to any communication on, within or around the body using wireless technology. Engineers play a key role in the advancement of healthcare as they create access to these life-changing technologies. Suggested learning outcomes By the end of this STEM activity students will understand how an antenna turns radio frequency radiation into a voltage and vice versa, they will understand the role of antenna in electronic communications systems. They will also be able to consider ethical standpoints on using advanced technology to control prosthetics. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
What is aerodynamics?
IETEducationIETEducation

What is aerodynamics?

(0)
Understanding aerodynamics by making and testing an aerofoil Aerofoils are designed to allow aircraft to fly. The design of these is crucial to minimise drag and increase lift. This is one of a set of resources produced in conjunction with the engineering company Arconic. The resources are designed to support teaching of key engineering concepts at both KS3 and KS4, including the new GCSE in Engineering. This resource focuses on understanding aerodynamics and making a simple aerofoil. Students will learn about the terms lift, drag, and thrust and how these apply to aircraft. This engaging activity will build knowledge of aerodynamics theory and how this can be applied. This could be used as a one-off main lesson activity, as an introductory lesson to a wider unit of work focusing on aerodynamics or as part of a scheme on aircraft design using all of the resources developed in association with Arconic. It could also be used to support our existing IET Faraday resources. This activity can be completed as individuals or in small groups. A small piece of paper (A5) would be suitable to make the aerofoil. Air could be applied by blowing or using an electric fan on a low setting. The aerofoil could also be attached to the desk with a piece of spring during the testing to prevent it from moving backwards and so that flight can be more easily observed. This could be fed through the space inside the aerofoil, and taped to the desktop at both ends, allowing some slack so that it can raise/fly. Alternatively, a wood dowel could be inserted loosely through a hole made in the top and bottom of the aerofoil. This activity will take approximately 50-60 minutes to complete. Tools/resources required Projector/Whiteboard Small pieces of paper or thin card Tape, e.g. masking tape String Suggested learning outcomes By the end of this activity students will have an understanding of the terms lift, drag and thrust, they will have an understanding of how an aerofoil works and they will be able to make and test a simple aerofoil design. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Careering towards the future
IETEducationIETEducation

Careering towards the future

(0)
Explore the engineering careers that are available today, the potential rewards of these careers, how engineering has shaped our society and how engineering could transform the world we live in in the future. Depending upon the option selected, you can also investigate the influence of famous engineers/technologists of the past and people working in Engineering today. Part of the #IETLookAtMeNow campaign exploring the different ways that toys and imagination can represent a world of possibilities and invention to children. For engineers and scientists, the possibilities and invention never end. They are proof that our toys and dreams today impact our innovations tomorrow.
Modelling methods
IETEducationIETEducation

Modelling methods

(0)
Secondary classroom poster where students can find out how designers use models to understand how their ideas will look and function. Download the single poster or order a full set of posters for free from the IET Education website.
Weather poster
IETEducationIETEducation

Weather poster

(0)
Primary classroom poster explaining more about the weather in different parts of the world. Order a full set of primary posters for free form the IET Education website.
How to make a simple electronic switch
IETEducationIETEducation

How to make a simple electronic switch

(0)
Learn how electronic switches work and assemble a variety of different switches in this fun and engaging STEM activity! This is a free resource that could be used in KS2 as an extension to an activity to introduce circuits, or to support a design and make project, such as the doorbell activity or adding a motor to the ‘cardboard cars’ activity. This activity will take approximately 70-90 minutes. Tools/resources required Projector/Whiteboard 4 x AA batteries in holder Buzzers (e.g. Miniature Electronic Buzzer 6v) 3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used; no wires will be needed if the buzzer also has attached wires) 4 metal split pin fasteners and 1 paper clip per pupil A5 pieces of card (can be cut to A6 for backing of the paper clip switch and 2 x A7 for the folded and foil switch) Metal foil Sticky tape or electrical insulation tape. (Potential sources for the components include Rapid or TTS Group) If needed: Wire cutters/strippers Optional: Hole punches (ideally single hole punches) Scissors Pre-made models of each switch, for demonstration Electronic switches An electrical circuit is a group of components that are connected together, typically using wires. The wires are usually copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e., have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches make a gap in the circuit to stop electricity flowing when they are open. There are a wide variety of different types of switches that can be used. The engineering context Circuits form the basis of all electrical equipment, ranging from lighting in homes to televisions and computers. Suggested learning outcomes By the end of this activity students will be able to construct an electrical switch, they will have an understanding that a complete circuit is required for electricity to flow, and they will be able to construct an electrical circuit. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Population growth
IETEducationIETEducation

Population growth

(0)
Discussing how engineering can support urban growth This activity provides a quick, engaging introduction to a lesson, focusing on the link between sewage and the underground tunnel system. It encourages students to think about the role of engineers in providing us with healthy sanitation and waste-water disposal systems. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in science, geography, engineering or design and technology (DT). Activity: Discussing how engineering can support urban growth Students will investigate sewage tunnels that are being built under London by first watching our Shifting sewage film. Students will then consider how society has changed over time, to identify the influences that have resulted in the needs for the new tunnel. Download our activity overview for a detailed lesson plan on the engineering challenges that come with population growth. The engineering context As cities like London grow, the need for expanded sanitation systems need to be considered for the removal of urban waste. This can present logistical challenges as there will often be an existing waste tunnel system, along with transport networks such as the London underground, causing complexity. Engineers will therefore need to carefully consider several factors for new engineering projects that support population growth including geology, environmental impact, available technology, local disruption (and the political considerations that come with that) along with the existing infrastructure. Suggested learning outcomes By the end of the lesson students will appreciate the issues around developing new tunnel systems in their location. Download our activity sheet for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including video clips), and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Investigating cast products
IETEducationIETEducation

Investigating cast products

(0)
What affects the properties of the material in a cast product? In this activity students will explore how changing the ratio of PVA glue to PoP (plaster of Paris) affects the strength of a composite material. They’ll test both tensile and compression strength to find the perfect mix. This activity is part of a series of resources designed to challenge the students by requiring them to apply the knowledge and understanding of engineering materials through a ‘batch’ production experience, including CAD design project , Investigating batch production, and Engineering design processes. It’s one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in engineering and design and technology (D&T). Activity: What affects the properties of the material in a cast product? In this activity students will investigate how the proportion of PVA glue added to plaster of Paris (PoP) affects the properties of the material produced in a cast product. Students will work in pairs to create card moulds. They will then mix different ratios of PVA, PoP, and water, pouring each mixture into duplicate moulds. After the test strips dry overnight, they’ll conduct two types of strength tests: a tensile test (hanging weights) and a compression test (using a G-clamp). They’ll then be tasked with analysing the results to determine how PVA affects the material’s strength. Look for patterns and identify the optimal ratio of PVA to PoP. Finally, decide on the best ratio for your future casting projects and present your findings to the class, using graphs or tables to support your conclusions. Download our activity overview for a detailed lesson plan on CAD design. The engineering context As part of the production process, engineers and designers must test the properties of different materials in order to select the best materials for their products to ensure that they’re suitable (e.g., are they strong enough for the activity that they’ll be used for?). Suggested learning outcomes Students will be able to explain how to develop a product or material to improve the outcome (engineering materials). They’ll also learn how to set up an experiment that allows key decisions to be made from the outcome. Finally, they’ll be able to carry out a manufacturing and testing programme, understanding the importance of time allowance and quality control. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Product integration - Design the casing for your food temperature probe
IETEducationIETEducation

Product integration - Design the casing for your food temperature probe

(0)
In this activity students will design a prototype for a casing and housing a food temperature probe. The activity can be used as a follow-on activity from our Micro:bit food temperature probe design project. It’s part of a series of resources which support the use of the BBC micro:bit in design and technology (DT) or computing lessons. Activity: Designing the casing for a food temperature probe This activity tasks students with turning a BBC micro:bit food temperature probe into a finished product. Students will need to consider aesthetics and ergonomics, how it can securely enclose and fit the food temperature probe, and also which materials should be used that are fit for purposes. Students will sketch their casing ideas, adding notes explaining their design choices. Students can also create a prototype of their design using modelling materials (e.g., card). Download our activity overview for a detailed lesson plan on product integration. The engineering context Integrating programmable systems within products is an important part of the design process when working with electronic products and systems. Not only does the system have to function correctly, the finished product also has to be commercially viable in the sense that it must be cost-efficient to manufacture, and attractive enough for potential customers to want to buy. Suggested learning outcomes By the end of this lesson, students will be able to develop a design for a fully integrated electronic product. They’ll also be able to annotate their ideas using technical language. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Download our classroom lesson plan and presentation below. Please do share your highlights with us @IETeducation
Water aqueduct shapes
IETEducationIETEducation

Water aqueduct shapes

(0)
Calculate the cross-sectional areas of different aqueducts to determine which is most effective In this STEM activity students will investigate different aqueduct shapes to determine which is the most efficient design. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within mathematics and engineering. Activity: Calculating the cross-sectional areas of different aqueducts In this lesson, students must calculate the cross-sectional area of various aqueducts to determine which one is most effective in terms of least water lost via evaporation. Using our Aqueduct presentation, learners will be introduced to the engineering behind aqueducts by estimating the volume of water follow through the aqueduct in one second. Students will then calculate the cross-sectional areas of various aqueduct shapes, including rectangles and trapezoids. To do this, learners must apply their understanding trigonometry to find the missing side lengths. Alternatively, students can use this GeoGebra file to calculate the area of the trapezium. Download our activity overview for an introductory lesson plan on trigonometry for free! The engineering context Aqueducts are constructed to carry water across gaps such as valleys or ravines. In modern engineering, the term aqueduct is used for any system of pipes, ditches, canals, tunnels, and other structures used for this purpose. Aqueducts can be used to enable water to be transported to areas where it is in short supply. Suggested learning outcomes In this activity students will apply their knowledge of mathematics such as calculating the area of a rectangle and trapezium or the volume of a cuboid. They will also be able to specifically apply their knowledge of trigonometry. Finally, they’ll learn how to plot graphs using a table of values. Download our activity sheet and other teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. You can download our classroom lesson plan for free!
Create a flood warning system
IETEducationIETEducation

Create a flood warning system

(0)
Alert homeowners to the risk of flooding with your prototype In this free resource, learners will identify the design problems presented by flooding. They will then develop a working flood warning system using the BBC micro:bit. By engaging in this activity, students will gain valuable knowledge about computing and design principles while having fun at the same time. This could be used as a main lesson activity. It is an ideal exercise for learners to improve their understanding of basic electronics, develop programming skills, make use of programmable components, and embed intelligence into a product design. **Tools/resources required ** Projector/Whiteboard BBC micro:bit system and online programming software Internet (to access programming software) PCB development software Moisture sensors and LEDs Crocodile clips or other wiring options (to attach input and output devices) PCB or strip board to create homemade moisture sensors and/or potential divider circuits PCB production facilities (etch tank or CAM router) What is the BBC micro:bit? The BBC micro:bit is a great way to get kids interested in computing. It is a small, programmable computer that can be used to create a wide variety of activities and projects. It is a powerful teaching and learning tool that helps learners develop their own systems and learn the basics of coding. It is an ideal tool for introducing children to programming concepts in a fun and engaging way. The engineering context This is an ideal topic for teaching about programmable components and embedded intelligence in products. These are key parts of the 2014 programme of study for Design and Technology at KS3. It is also an ideal vehicle for using the BBC micro:bit in the classroom and developing the programming skills of learners. Suggested Learning Outcomes By the end of this activity students will understand a block systems diagram of the flood warning system and they will understand the use of a moisture sensor as an input sensor. They will also be able to design a moisture sensor and/or potential divider circuit. Lastly, they will be able to successfully program the BBC micro:bit so that the system meets the design criteria. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Programming commands
IETEducationIETEducation

Programming commands

(0)
Learning to programme using BASIC language commands This activity is designed to build on understanding of programming commands and what they are used to do in a program. It requires students to show a detailed knowledge of each command and what it is used to do. It also requires them to apply programming commands in a real context. Students will engage with the BASIC language commands, understanding their purpose and how they function. They will write their own program to control an LED light, seeing first hand how their code translates into action. BASIC is a simple programming language that can be used to program electronic systems. It consists of a set of commands that can be used to perform particular functions. This is one of a set of resources developed to aid the class teaching of the secondary national curriculum, particularly KS3. It has been designed to support the delivery of key topics within engineering and design and technology (DT). Activity: Learning to programme using BASIC language commands This activity involves understanding and applying BASIC programming commands. Starting with a discussion about the language and its common commands, students will then predict the functions of commands like ‘high’, ‘low’, ‘goto’, ‘wait’/‘pause’, ‘if’, ‘else’, and ‘stop’. They will put their understanding into practice by writing a program to control an LED light. Reflection on their experience and a question-answer session will round off the activity, consolidating their learning and addressing any queries. The engineering context Programming plays a crucial role in engineering, especially with the rise of programmable systems, such as smart devices and autonomous vehicles. By learning to program in BASIC and applying it in a real context, students get a sense of how engineers use programming to create solutions and control systems. Suggested learning outcomes Through this beginner activity, students will gain an understanding that programs can be written using programming code. They will learn the purpose and function of a range of BASIC programming commands, and they will also get a chance to write a program using these commands to meet a given design brief. The activity aims to provide students with a solid foundation in programming, equipping them with the skills and knowledge to further explore this vital field. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download (including the video), and all the documents are fully editable, so you can tailor them to your class’s and your schools’ needs. Please do share your highlights with us @IETeducation.
What is Remote Surgery?
IETEducationIETEducation

What is Remote Surgery?

(0)
Learn about the robots used to perform remote surgery and the important role of electromagnetism Telemedicine is a new and fast-developing field in healthcare. Even 20 years ago the idea of a surgeon being able to operate a robot from hundreds of miles away in order to perform an operation seemed like science fiction. Today, this is not only possible but engineers, working with scientists and doctors, are now designing robotic systems which will be able to operate on patients with no human intervention at all. This activity is a quick, engaging introduction to a lesson using telemedicine and robotics as a context to explore electromagnetism and the link between technology and real-life science. Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation
Smart sensor card game
IETEducationIETEducation

Smart sensor card game

(0)
Card game to consolidate understanding of electronic systems The role of smart sensors in our everyday lives is becoming increasingly fundamental. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future. Students are introduced to some recent developments in using smart sensors in control systems. Many of these uses are in health care and other high-tech applications. Activity info, teachers’ notes and curriculum links In this activity students learn the differences between smart sensors and ordinary sensors by studying some applications of smart sensors. They may also use a card game to consolidate their understanding of electronic systems. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. You can stream and download the related films by clicking on the appropriate link in the related resources section. And please do share your classroom learning highlights with us @IETeducation
Solar powered engine
IETEducationIETEducation

Solar powered engine

(0)
Making a model of an electric aircraft engine and calculating how long this could power an aircraft using solar energy. Under the future of flight theme, learners will make a model of an electric aircraft engine that uses solar-powered rechargeable batteries and a motor. They will then test their circuit to see if it works and calculate how long it can run for before it needs to be recharged. This activity could be used as a main lesson activity to teach about assembling models of circuits and the use of renewable energy. It could also be used as part of a wider scheme of learning to support focussed practical skills or about engineering career opportunities within the aviation sector. You will need Solar AA battery charger 2 x rechargeable AA batteries AA batteries connector/holder Red and black crocodile clips Slide or toggle switch Electric solar motor Atlas (for extension activity determining potential journey destinations) All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
How high will it go?
IETEducationIETEducation

How high will it go?

(0)
Find the height achieved by a flying object using trigonometry. In this activity learners will work out the height of a released balloon using a clinometer and trigonometry. This is one of a series of resources designed to allow learners to use the theme of the future of flight to develop their knowledge and skills in in Design and Technology, Engineering and Mathematics. This activity could be used as a main lesson activity to teach learners about the practical application of trigonometry. It could also be used as part of an introduction to the use of trigonometry within engineering. You will need: Thin card Balloons Balloon pump, if required Brass split pin paper fasteners Scissors Sharp pencils and erasers Calculators Tape measure All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Stop it: Design a system to slow a spaceship descent
IETEducationIETEducation

Stop it: Design a system to slow a spaceship descent

(0)
Develop a parachute-type system to slow a landing spacecraft. In this activity learners will make use of the theme of the future of flight to develop a parachute type system that will help a spacecraft to land and stop safely. They will be able to make design decisions contributing to the performance of their solution. They will then test their prototype to see how well it works. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Hydrogen power
IETEducationIETEducation

Hydrogen power

(0)
How to make hydrogen from water. In this activity learners will make use of the theme of the future of flight to investigate one of the potential energy sources of the future. They will discuss the problems associated with the use of oil-based fuels and how the use of hydrogen fuels could solve them. They will then produce hydrogen from water and investigate ways to make it work better. This activity could be used as a main lesson to teach about power supplies and renewable energy within a transport context. It could also be used as part of a wider scheme of learning to teach about sustainability and environmental issues. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation