Hero image

516Uploads

198k+Views

106k+Downloads

Flying high
IETEducationIETEducation

Flying high

(0)
Calculating the amount of energy needed to launch a rocket into space. In this activity learners will make use of the theme of the future of flight to calculate the amount of energy needed to launch a space rocket. They will discuss the meaning of the term escape velocity and then perform calculations based on the Space X and Saturn V rockets. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Aircraft chic
IETEducationIETEducation

Aircraft chic

(0)
Create a presentation suggesting how a company could re-use aircraft or parts of aircraft. In this activity learners will make use of the theme of the future of flight to create a presentation for the board of the company suggesting how they could re-use aircraft, or parts of aircraft, being retired from their fleet. They will research the different parts of an aircraft and existing products that make use of their old parts. They will use this information to create ideas for their own products. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Pop-up airport
IETEducationIETEducation

Pop-up airport

(0)
Providing disaster support for a famine hit country. In this activity learners will design a pop-up airport to allow the delivery of food supplies to people in famine affected, remote areas. They will consider the requirements of the airport and how it can be made quickly using readily available resources. They will then produce a sketch of their idea ready for implementation. You will need: Access to word processing or desktop publishing software (if using ICT) Paper Card Pencil and pens Ruler Tape and/or glue All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Which materials for an aircraft?
IETEducationIETEducation

Which materials for an aircraft?

(0)
Measuring the density of materials to choose which to use in an aircraft. In this activity learners will discover the density of materials through testing. Learners will have an opportunity to weigh and work out the volume of an object. They will use this information and their number skills to calculate the density. They will then repeat this for other objects and discuss their results as a class. You will need: Range of different materials to test Bowls and trays Science beakers/Measuring jugs Weighing scales Water All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation
Paper chain fun
IETEducationIETEducation

Paper chain fun

(0)
Consider colour sequences and measurements while making paper chains for Christmas Paper chains are super easy to make and a great way to decorate a room or Christmas Tree. In this Christmas STEM activity, students are going to try to make the longest chain possible with three pieces of paper. Students will consider the different sequences that are all around them, whilst thinking about colour patterns and number sequences. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
Measure the velocity of balloon rockets
IETEducationIETEducation

Measure the velocity of balloon rockets

(0)
A project to measure the velocity of balloon rockets. In this fun activity, learners will make a balloon rocket and carry out timed tests to calculate the velocity of the balloon. This activity introduces the concept of flight, speed and energy through the making of a balloon rocket. You will need: Balloons of various shapes Balloon pump String Scissors Sticky tape Thin card/paper Pencil Stopwatch/timing device Measuring tape (5 m) Calculators All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights with us on social media @IETeducation
Freezing point experiment
IETEducationIETEducation

Freezing point experiment

(0)
Engage your student’s sciences skills and get them thinking about liquids, ions, icy surfaces and global warming In this winter STEM activity, students will experiment with salt to test different freezing points. This activity will engage their sciences and maths skills and get them thinking about liquids, ions, icy surfaces, global warming and more! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. And please do share your learning highlights and final creations with us on social media @IETeducation #SantaLovesSTEM
Emergency Communications Challenge
IETEducationIETEducation

Emergency Communications Challenge

(0)
IET Faraday® DIY Challenge Day A set of printable resources and guidance notes giving teachers and technicians the basic ingredients to run their very own IET Faraday® DIY Challenge Day. This cross-curricular activity day brings science, design and technology, engineering and maths (STEM) together in an engaging way. The context of the challenge Ease of communication is part of our life, we pick up the phone, turn on the radio, TV or internet to get news and information. Wifi networks work by radio signals. Your phone, TV and radio signals are transmitted by masts we hardly notice. But when all of these are knocked out by natural events how do we communicate? Students are the engineer rescue team based in the town of Alpha which has been relatively unaffected by the extreme weather. As the engineer rescue team in town Alpha, students will design and build a prototype device that will need to send coded messages to town Beta, and create a code to send a message from Alpha across the mountains for decoding in Beta. There is little time to lose, with a (simulated) helicopter arriving in a matter of hours to transport half of the rescue team to town Beta to set up the system for testing. Designed for six teams of six students (36 students in total) aged 12 – 13 years (year 8, and equivalent), the challenge encourages the development of students’ problem solving, team working and communication skills. This activity day can be tailored to the needs of your school and your students by adapting the PowerPoint presentation and the editable student booklet. What’s included? The complete set of downloadable materials includes: Teachers pack A list of the practical materials needed, presenters’ notes highlighting key areas and reinforcing key themes throughout the day, some handy hints on how to deliver the day… plus printable Faradays currency and student certificates. Student booklet Available as an editable MSWord document to allow the booklet to be adapted to meets the needs of your students and your school. Introductory PowerPoint presentation A step-by-step guide for your students throughout the day, with supporting notes for the delivery of the presentation, including links to the related film clips. **Remember, it’s all free! ** All online resources (including film clips!) are free to download, and the student booklet and PowerPoint presentation are fully editable, so you can tailor them to your students’ and your schools’ needs. If you are running one of our IET Faraday® DIY Challenge Day please do share your experience with us via our feedback form and case study template here. If you are unfamiliar with how to run a IET Faraday® DIY Challenge Day have a look at our 6 start-up videos here where we take you through the days, how they should run and what they entail. And please do share your classroom learning highlights with us @IETeducation
Programming the robot buggy with the BBC micro:bit
IETEducationIETEducation

Programming the robot buggy with the BBC micro:bit

(0)
Work as a team to program the robot buggy so that it can navigate a maze path This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. Programmable robotic systems are becoming an important part of industrial developments in Design and Technology. Robots are now being developed that can sense changes in their surroundings and respond accordingly. In this unit of learning, learners will use the BBC micro:bit to develop a robotic buggy that can successfully navigate a maze or path. Activity info, teachers’ notes and curriculum links In this activity, learners will work as a team to program the robot buggy so that it can navigate a maze path. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Animal diet card game (KS1)
IETEducationIETEducation

Animal diet card game (KS1)

(0)
Card matching activity with animals and foodstuffs Herbivore, carnivore or omnivore? Play this fun and interactive game that will teach you all about the diets of different animals! This STEM game is great for primary school children to teach them about the world and the creatures living in it. It’s simple to assemble and all instructions can be found in the free, printable activity sheet below. This activity could be used as a main activity to develop knowledge and understanding of the terms herbivore, carnivore and omnivore, as well as giving examples of animals included in each category. **Activity: ** This is one of a set of resources developed to support the teaching of the primary national curriculum. They are designed to support the delivery of key topics within maths and science. This resource focuses on what is meant by carnivore, herbivore and omnivore. It involves identifying what animals eat and sorting them into groups. This activity could be carried out individually, in pairs or in small groups. The cards for the game can be found in the teacher presentation below. Print and cut the cards out from the presentation. 1 set of 20 sorting cards should be given to each individual, pair or group. Sorting labels of herbivore, carnivore and omnivore could be provided if appropriate. The cards have coloured borders representing their grouping – red for carnivore, green for herbivore and blue for omnivore. These could be omitted by printing the cards in black and white. Tools/resources required Animal diet card game cards Drawing paper Coloured pencils The Engineering Context Food engineers are responsible for ensuring the safe and efficient processing, packaging and delivery of food to every store shelf in the world. It is a vital job to help safely feed all of humanity and the animals that we look after. Suggested Learning Outcomes By the end of this activity students will be able to identify and name a variety of common animals, they will be able to identify and sort animals into categories of what they eat and they will be able to sort animals into herbivores, carnivores and omnivores. Download the Animal diet game activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Gravity free water
IETEducationIETEducation

Gravity free water

(0)
Using the effects of air pressure to defy gravity Gravity is defied in this super simple gravity-free water experiment. Children use the effects of air pressure to make it look as though there is zero gravity in an upside-down glass of water. Get your children to fill a glass with water, place a piece of card over it and turn it upside down. Discuss how gravity works, why gravity is important, and how the water stays in the glass. Gravity discovery is exciting and using a hands-on experiment with minimal equipment will make a gravity discovery lesson the highlight of their day. Tools/resources required Drinking glass Access to a sink and/or water Small pieces of thick card (preferably coated/shiny) to cover the glass This activity could be used as a starter or main activity to introduce the effects of gravity and air pressure, or as one of several activities within a wider scheme of learning focusing on different types of forces. Use the content for gravity discovery and to think about why gravity is important, how gravity works and most importantly spark a life-long science interest with your class and children. Please share your classroom learning highlights with us @IETeducation
Is remote surgery safe?
IETEducationIETEducation

Is remote surgery safe?

(0)
Identify the advantages and disadvantages of remote or robotic surgery Telemedicine is a new and fast developing field in healthcare. Even 20 years ago the idea of a surgeon being able to operate a robot from hundreds of miles away in order to perform an operation seemed like science fiction. Today, this is not only possible but engineers, working with scientists and doctors, are now designing robotic systems which will be able to operate on patients with no human intervention at all. Activity info, teachers’ notes and curriculum links In this activity, learners will explore the impact of modern technology on science, using telemedicine and robotics as a context. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Photovoltaic cells - Modifications
IETEducationIETEducation

Photovoltaic cells - Modifications

(0)
Investigate some potential modifications to your solar powered night-light circuit The ‘Let there be light’ scheme of work involves investigating how photovoltaic cells are used and then using this technology to make a series of electronic circuits of increasing complexity. This could form the basis of a Design and Make Assignment (DMA) project in Design and Technology (D&T), with cross-curricular links with Science. Activity info, teachers’ notes and curriculum links An engaging activity in which students will investigate some potential modifications to the circuits they have designed and made in the ‘Let there be light 2’ activity. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet below! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Social effects of health management
IETEducationIETEducation

Social effects of health management

(0)
How could programmable systems be used to allow people to monitor their own health? This is one of a series of resources to support the use of the BBC micro:bit in design and technology lessons. There are many reasons to monitor heart rate. For example: There are 2.7 million people in the UK currently suffering from heart problems. The quicker these problems can be found and treated the better the chance of a full recovery. Athletes measure their heart rate during training to ensure that they are training in their optimum physical range. In this unit, learners will use the BBC micro:bit to develop a prototype for a personal heart monitoring system. Activity info, teachers’ notes and curriculum links In this activity, learners will discuss the social effects of good and bad personal health management and the potential benefits that programmable systems can bring to this. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Design a model vacuum tube train
IETEducationIETEducation

Design a model vacuum tube train

(0)
Learn about train design and improve engineering skills with this fun STEM activity! In this activity students will design a model high-speed vacuum tube train. Students will have to decide on how to get a ball to travel through a tube as quickly as possible without the help of gravity. They will then look at the forces that would act on a real vacuum tube train. Students should be supplied with a variety of marbles and ball bearings in various sizes. They should be allowed to choose which sizes they want (this will depend on the method they choose). Options may include using a magnet to pull the ball, using force from a metal rod or air from a pump to push it. Learners can’t rely on gravity – the tubing needs to be placed on a level desk or floor. Groups are asked to record the speed and then modify their design to make it faster. They will need to use stop clocks to measure time and then calculate speed. If you have data-loggers to measure speed these can be used instead. Students should understand the need for repeating their measurements and they should record them in a table. Groups can modify the ball if they wish. They might want to make it more aerodynamic by using paper or by using a lubricant. As an optional extension, students could modify their design so it has a safe stopping mechanism. Alternatively, students could write an explanation as to why air resistance is not a problem in a vacuum tube train and why this is an advantage. How long will this activity take? This activity will take approximately 50 minutes to complete. What is a vacuum tube train? A vacuum tube train, also known as a vactrain, is a proposed design for train transportation. The train would use maglev technology to run in partly evacuated tubes or tunnels. Reduced air resistance could allow vacuum tube trains to travel at very high speeds – up to 4,000 mph! Suggested learning outcomes By the end of this activity students will be able to design a model vacuum tube train and they will be able to use a force diagram to show the forces interacting on a real vacuum tube train. Download the activity sheet for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Design an automatic lighting system
IETEducationIETEducation

Design an automatic lighting system

(0)
Use the BBC micro:bit programmable system to create a working prototype of a automatic lighting system This is one of a series of resources to support the use of the BBC micro:bit in Design and Technology lessons. People are always looking for ways to save energy. It is estimated that the average UK homeowner could save up to £240 a year alone on the cost of lighting their home. In this unit of learning, learners will use the BBC micro:bit to develop a prototype for an LED based automatic home lighting system, designed to save energy. Activity info, teachers’ notes and curriculum links In this activity, learners will develop their programmable lighting system using the BBC micro:bit. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Ohm's law resistor calculation with the BBC micro:bit
IETEducationIETEducation

Ohm's law resistor calculation with the BBC micro:bit

(0)
In this activity students will learn about importance of and use Ohm’s law to calculate the value of a protective resistor for an LED. Using a BBC micro:bit, they will develop a prototype for an LED based automatic home lighting system, designed to save energy. This prototype aims to promote energy efficiency, a concern that resonates with our daily life as it’s estimated that the average UK homeowner could save up to £240 a year alone on the cost of lighting their home. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3. This is part of our series of resources designed to support the use of the BBC micro:bit in secondary school design & technology (DT), computing and engineering lessons. It can also be used to support physics sciences lessons. Activity: Developing a prototype for an LED based automatic home lighting system In this sustainable lighting activity, students will be tasked with creating a smart lighting system that adjusts based on environmental conditions. The engineering context Engineers are often required to program devices to perform specific tasks, optimise system performance, or even create entirely new technologies. This involves understanding how to embed intelligence into products, which can range from simple household items like automatic lighting systems to more complex systems like autonomous vehicles or smart city infrastructure. By learning programming skills and understanding how to integrate them into engineering projects, students will gain an insight into how different components can work together in a system. Furthermore, resistors are essential components in electronic circuits, controlling the flow of electricity and protecting components from damage by limiting the current. Understanding Ohm’s law and resistor calculation will lay the groundwork for many aspects of electronics and electrical engineering. Suggested learning outcomes By the end of this activity, students should be able to understand and apply Ohm’s Law, particularly in calculating the value of a protective resistor for an LED. The skills they acquire will extend beyond the classroom, equipping them with practical knowledge that can be applied in real-world situations. This activity will also set a solid foundation for more complex electronic theory lessons or when delving deeper into the relationship between voltage, current, and resistance. Download our activity sheets for free! The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation
Tool holder testing
IETEducationIETEducation

Tool holder testing

(0)
Students compete to make the strongest electromagnetic tool holder for a surgeons robotic arm. A practical activity where students work in teams to build their own electromagnet and use this to make an ‘arm’ with an electromagnetic gripper at one end. They are given some basic parts to start and a budget - a sum of ‘money’ or tokens with which to buy the other parts. Once their arm and gripper are complete they have 30 seconds to move as many paper clips from one pile to another as possible. The team moving the most paper clips in the allotted time is the winner. This activity makes students consider the factors involved in electromagnet strength and design. Download the activity sheets for free! And please do share your classroom learning highlights with us @IETeducation
Identifying sensors
IETEducationIETEducation

Identifying sensors

(0)
Identify which components can be used as electronic sensors The role of smart sensors in our everyday lives is becoming increasingly fundamental. The Smart Sensor Communications topic focuses on what smart sensors are, how they are being used today and how they can be innovative in the future. In this activity, the focus is on how sensors can be used to detect changes in the environment and can be used as part of a monitoring or control system. Activity info, teachers’ notes and curriculum links An engaging starter activity introducing students to the devices that can be used as part of an electrical system to monitor changes, and showing them that the characteristics of a device can vary according to changes in the environment. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources (including film clips!) are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Acoustic engineering 1
IETEducationIETEducation

Acoustic engineering 1

(0)
What makes one set of headphones better than another? This is a fun STEM activity designed for secondary school students that will allow them to understand ergonomics and aesthetics in an authentic context and apply their findings in a creative and challenging way. These starter activities have been inspired by the ‘Sound Design’ film and focuses upon the development of earphones and headphones. Students are provided with the opportunity to analyse earphones currently on the market in a structured, detailed, and creative way. They are then encouraged to investigate the potential development of this product. Download our free activity sheet for a range of starter activities. These activities are designed to be as flexible as you need them to be – they could form the basis of the lesson or be used as starters for a series of lessons. As an extension to this activity students could complete the main activity in this series titled ‘Acoustic Engineering 2’. Tools/resources required Sound design film (below) Projector/whiteboard A range of earphones and headphones (these could be provided by the students or collected by the department over time) Suggested learning outcomes By the end of this free resource students will be able to understand how to analyse a product. They will also be able to identify areas for development when analysing a product and to be able to present their design considerations when deciding which areas and features to develop. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation