Hero image

Science 4 Breakfast

Average Rating5.00
(based on 4 reviews)

Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.

172Uploads

17k+Views

2k+Downloads

Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
GCSE Chemistry Ionic Equations for Metal and Acid Reactions Oxidation and Reduction: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Ionic Equations for Metal and Acid Reactions Oxidation and Reduction: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Describe the reaction between metal and acid using an ionic equation. Determine and explain which species is oxidised and which species (metal atom or ion) is reduced in a reaction in terms of electron transfer. Includes questions, answers, examples and explanations. This is made for a GCSE chemistry class. If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
GCSE Chemistry Reactivity Series and Displacement Reactions: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Reactivity Series and Displacement Reactions: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Describe what the reactivity series is and the order of metals within it. Define what a displacement reaction is. Predict where displacement reactions occur. Write word equations to represent displacement reactions. Includes questions, answers, explanations and examples. This is made for a GCSE chemistry class.
GCSE Chemistry Reactions of Metals with Oxygen and Water: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Reactions of Metals with Oxygen and Water: Complete Lesson

(0)
PowerPoint that covers the following learning objectives: Describe the reaction between metals and oxygen and write the word and symbol equation for this. Describe the reaction between metals and water and write the word and symbol equation for this. Deduce the order of reactivity for metals reacting with oxygen and with water. Includes questions, answers, word equation practice and chemical symbol equation practice. This is made for a GCSE chemistry class.
GCSE Chemistry Giant Covalent Structures - Diamond, Graphite and Silicon Dioxide: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Giant Covalent Structures - Diamond, Graphite and Silicon Dioxide: Complete Lesson

(0)
This engaging lesson on giant covalent structures, updated on 3rd December 2024, provides students with a comprehensive understanding of this unique type of chemical bonding. The resource includes interactive activities, clear diagrams, and detailed explanations tailored for secondary school science students. Giant covalent structures consist of non-metal atoms bonded together by strong covalent bonds, forming extensive lattice structures. Examples include diamond, graphite, and silicon dioxide. These substances exhibit properties like high melting and boiling points due to strong bonds, hardness (except for graphite, which is soft and slippery), and poor electrical conductivity (with graphite as an exception due to its delocalized electrons). The lesson covers: Key examples of giant covalent structures. Comparative analysis of their properties. Applications such as diamond in drill bits and jewellery, graphite in pencils and lubricants, and silicon dioxide in glass and ceramics. With structured activities, such as matching exercises and review questions, students will reinforce their understanding of concepts like why diamond is a non-conductor and graphite is an excellent conductor. Starter questions encourage critical thinking about molecular forces and conductivity, while an optional video link provides visual reinforcement. How to use: Teachers can guide students through the material by introducing the big question, using interactive matching tasks, and encouraging collaborative discussion during the exercises. This resource ensures students grasp the fundamental properties and applications of giant covalent structures in real-world contexts.
GCSE Chemistry Concentration of Solutions: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Concentration of Solutions: Complete Lesson

(0)
This resource is a complete lesson on expressing concentrations, ideal for secondary school chemistry students. It covers fundamental concepts of solution concentration, with step-by-step explanations and engaging activities. The PowerPoint presentation (.pptx) includes clear visuals and practice questions designed to enhance student understanding of the topic. What’s Included: Learning Objectives: Define the concentration of a solution. Calculate concentration in g/dm3 using mass and volume. Determine the mass of solute from given concentrations and volumes. Explore methods to adjust solution concentrations. Starter Activity: Students calculate relative atomic mass, relative formula mass, and percentage composition of compounds. Key Definitions: Clear explanations of solute, solvent, and solution with relatable examples, such as diluting squash. Interactive Examples: Real-life contexts like adjusting saltwater concentration through adding solute or reducing solvent. Concentration Equation: Formula and practice questions, emphasizing unit conversions (e.g., cm3 to dm3). Review and Reflection: Guided review questions to consolidate understanding. Key Features: This resource offers a mix of theoretical knowledge and practical application, including problem-solving tasks with answers for feedback. It helps students grasp concentration concepts essential for chemistry and real-world applications, like preparing solutions in labs. File Type: PowerPoint (.pptx) Updated: December 2024 – Includes enhanced examples and additional practice questions. Perfect for classroom teaching or independent learning, this lesson is designed to engage students while building core skills in chemistry!
GCSE Chemistry Effect of Surface Area on Rate of Reaction: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Effect of Surface Area on Rate of Reaction: Complete Lesson

(0)
This engaging PowerPoint presentation, titled Surface Area, provides an in-depth exploration of how surface area affects the rate of chemical reactions. It is specifically designed for science educators aiming to deepen students’ understanding of collision theory and reaction dynamics. The resource begins with clear learning objectives: identifying factors influencing reaction rates and explaining how surface area impacts these rates. A starter activity involving word unscrambling and foundational questions primes students for the main content. The lesson introduces collision theory, activation energy, and the role of particle interactions in reaction rates. Students explore the effects of surface area through practical examples, including calculations comparing the surface area of whole cubes and smaller subdivisions. Visual aids and structured activities, such as filling in the gaps and analyzing reaction scenarios, enhance comprehension. A detailed explanation of how increased surface area leads to more frequent and energetic collisions solidifies theoretical understanding. This resource also includes a practical alternative using a video demonstration of calcium carbonate reacting with hydrochloric acid. Students learn to graph reaction rates and interpret data, distinguishing between scenarios involving whole and crushed marble chips. The steeper slope for crushed chips vividly illustrates the concept of reaction rate acceleration. Practice questions and challenge questions extend learning opportunities for diverse student abilities. The included file is a PowerPoint presentation (.pptx), ensuring compatibility with standard devices. Updated with the latest interactive features and alternative formats, this resource is a valuable tool for both classroom and virtual teaching environments. Keywords: Collision Theory, Surface Area, Reaction Rate and Activation Energy.
GCSE Chemistry Effect of Concentration and Pressure on Rate of Reaction: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Effect of Concentration and Pressure on Rate of Reaction: Complete Lesson

(0)
This PowerPoint resource, explores how changes in concentration and pressure affect reaction rates, making it ideal for secondary-level chemistry lessons. Students will learn to describe these effects, supported by collision theory, and understand how particle interactions influence reaction outcomes. The resource includes a structured lesson plan with objectives, engaging starter activities, and thought-provoking plenary questions. Students will answer questions like “What is collision theory?” and “Why does a concentrated acid react faster than a dilute one?” Visual explanations of particle interactions at different concentrations and pressures clarify key concepts. Real-world examples, such as comparing dilute and concentrated acids, help contextualize the material. Additional features include interactive elements, such as a link to an online simulation of reaction rates and practice questions, to reinforce learning. The resource is formatted as a .pptx file, ensuring compatibility with PowerPoint or Google Slides. Last updated on 13/12/24, this resource incorporates modern examples and student-centered activities, enhancing its relevance and usability. Perfect for teachers aiming to deliver dynamic lessons on reaction kinetics, it supports curriculum standards and fosters critical thinking.
GCSE Chemistry Effect of Temperature on Rate of Reaction: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Effect of Temperature on Rate of Reaction: Complete Lesson

(0)
This comprehensive PowerPoint presentation, titled Effect of Temperature, is a dynamic resource designed for educators teaching the impact of temperature on reaction rates. Targeted at science students, this resource aligns with the principles of collision theory and provides an interactive approach to learning. The lesson begins with clear learning objectives: understanding how temperature affects reaction rates and using collision theory to explain this phenomenon. A starter activity engages students with fundamental questions about reaction rates, graphing variables, and basic calculations, setting the stage for deeper exploration. The main content includes structured explanations and hands-on simulations, using the PhET Reactions and Rates tool. Students will observe and analyze reactions at varying temperatures, enhancing their grasp of key concepts like particle movement, activation energy, and the conditions for successful collisions. Visual aids and particle diagrams complement the teaching material, making abstract concepts accessible and engaging. This resource also features practice questions for skill reinforcement and challenge activities for advanced learners. A plenary section reviews key factors influencing reaction rates, encouraging students to consolidate their understanding. Designed for flexibility, this resource can be adapted to classroom or virtual learning environments. The included file is a PowerPoint presentation (.pptx), ensuring compatibility with most devices. Last updated on 13/12/24 with detailed annotations and questions, this resource provides an up-to-date and interactive tool for educators. Keywords: Collision Theory, Reaction Rates, Temperature and Activation Energy.
GCSE Chemistry Solubility: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Solubility: Complete Lesson

(0)
This PowerPoint presentation, titled Solubility, provides a comprehensive introduction to solubility for secondary-level science students. It focuses on defining solubility, identifying soluble and insoluble substances, and understanding how temperature impacts solubility. This resource offers a hands-on and theoretical approach, designed to align with curriculum standards and foster deep learning. The lesson begins with clear learning objectives and a starter activity that introduces key concepts and vocabulary. Students are guided through the definitions of solute, solvent, and solution, reinforced with real-world examples. The core lesson explains solubility as the maximum mass of solute that can dissolve in 100g of water, with detailed comparisons between substances like sugar and salt. Interactive activities include labeling substances as soluble or insoluble and filling in the gaps to consolidate understanding. Students also explore the concept of saturated solutions and how temperature affects solubility, with thought-provoking questions that connect theory to real-life contexts, such as seawater solubility at varying temperatures. The practical element guides students through an experiment to investigate the effect of temperature on solubility, complete with a detailed method, safety instructions, and analysis questions. Students learn to calculate solubility, plot graphs, and interpret data, developing their analytical and graphing skills. Updated with modern visuals and engaging activities, this PowerPoint file (.pptx) is compatible with most devices and adaptable for classroom or independent learning. It is an invaluable resource for educators seeking to make the topic of solubility accessible and engaging for their students.
GCSE Chemistry Rate of Reaction, Surface Area, Temperature, Catalyst Concentration & Pressure Bundle: 5 Lessons
Malachite44Malachite44

GCSE Chemistry Rate of Reaction, Surface Area, Temperature, Catalyst Concentration & Pressure Bundle: 5 Lessons

5 Resources
This versatile teaching bundle is a must-have for secondary-level chemistry educators, featuring five meticulously crafted PowerPoint presentations. Each resource delves into essential aspects of reaction kinetics, ensuring students develop a thorough understanding of key concepts such as rates of reaction, collision theory, activation energy, and the effects of various factors on reaction rates. What’s Included: Lesson 1 - Rates of Reaction: Defines key terms like reactants, products, and reaction rate. Explores methods for measuring reaction rates with engaging activities such as graph plotting and data analysis. Includes exam-style questions, starter tasks, and a plenary for comprehensive learning. Lesson 2 - Surface Area: Focuses on how surface area influences reaction rates. Includes practical calculations, structured activities, and video-based alternatives for experiments. Lesson 3 - Effect of Temperature: Explains how temperature affects reaction rates using collision theory and activation energy concepts. Features PhET simulations, practice questions, and particle diagrams to enhance understanding. Lesson 4 - Concentration and Pressure: Explains the impact of concentration and pressure on reaction rates, supported by collision theory. Offers real-world examples, online simulations, and student-centered activities. Lesson 5 - Catalysts: Introduces the definition, function, and real-world applications of catalysts. Covers reaction profiles and environmental benefits. Each resource is updated (December 2024) with modern examples, interactive elements, and enhanced visuals for better engagement. The bundle is provided in PowerPoint format (.pptx), ensuring compatibility with most devices and platforms. This comprehensive package supports curriculum standards and fosters critical thinking, making it ideal for classroom and independent learning.
GCSE Chemistry Solutions: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Solutions: Complete Lesson

(0)
This interactive PowerPoint presentation, titled Solutions, is designed for secondary-level science students to explore the concept of solutions, how substances dissolve, and the particle model of dissolution. It provides clear, engaging, and practical content, aligning with key science curriculum standards. The lesson begins with well-defined learning objectives: understanding key terms related to solutions, describing observations during the dissolution process, and explaining how substances dissolve using the particle model. A starter activity using word unscrambling ensures students are immediately engaged while introducing core vocabulary such as solute, solvent, and solution. Core content includes detailed explanations and examples of everyday solutions like sugar in tea, copper sulfate in water, and nail polish in acetone. The lesson uses visual aids, such as particle diagrams, to illustrate the arrangement and interaction of particles during the dissolution process. Practical tasks, like filling in the gaps and analyzing real-world examples, deepen students’ understanding. A hands-on demonstration reinforces the law of conservation of mass by measuring the mass of a solute, solvent, and solution. Students are guided to observe and calculate that mass remains unchanged during dissolution, emphasizing key scientific principles. The lesson concludes with review questions that assess comprehension and encourage critical thinking. Updated with modern examples and enhanced visuals, this resource provides an up-to-date and adaptable tool for educators. Delivered in a PowerPoint format (.pptx), it ensures compatibility with most devices and platforms. This lesson is perfect for both classroom teaching and independent learning. Keywords: Solutions, Solute, Solvent & Conservation of Mass.
GCSE Chemistry Filtration: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Filtration: Complete Lesson

(0)
This comprehensive PowerPoint presentation, introduces students to the concept of filtration and its applications in separating mixtures. Designed for secondary-level science students, the lesson blends theoretical understanding with practical activities to make learning interactive and impactful. The lesson begins with clear learning objectives: defining mixtures, describing the process of filtration using correct apparatus, and explaining its uses in separating insoluble solids from liquids. A starter activity engages students by asking them how to separate simple mixtures like flour and beans, setting the stage for deeper exploration of the topic. Core content explains mixtures as two or more substances not chemically joined and introduces filtration as a method to separate insoluble solids from liquids. Visual aids and labeled diagrams help students understand the process, detailing how filter paper allows smaller liquid particles to pass through as filtrate, while larger solid particles remain as residue. Examples like muddy water and coffee filtration provide relatable, real-world contexts. The practical component involves a class demonstration or student experiment where mixtures such as muddy water and copper sulfate solution are separated using filtration. Students answer reflective questions to reinforce their understanding, such as identifying filtrates and residues and why some mixtures, like copper sulfate solution, cannot be separated using this method. The lesson includes practice questions, gap-fill activities, and a plenary to summarize key learning points. Delivered in a PowerPoint format (.pptx), it is compatible with most devices and updated with modern visuals and examples for enhanced engagement. This resource is ideal for classroom teaching or independent learning, providing a thorough exploration of filtration techniques.
GCSE Chemistry: Rates of Reaction: Complete Lesson
Malachite44Malachite44

GCSE Chemistry: Rates of Reaction: Complete Lesson

(0)
This PowerPoint resource, Lesson 1 - Rates of Reaction, introduces students to the concept of reaction rates in chemistry. Designed for secondary-level science classes, this resource helps students define key terms such as reactants, products, and rate of reaction, while also exploring methods for measuring reaction rates using real-world examples. The lesson includes engaging activities like graph plotting, calculating gradients, and analyzing reaction data to determine the mean and instantaneous rates of reaction. Students will develop critical analytical skills by interpreting graphs and calculating the gradient of tangents to measure reaction rates at specific points. Key methods for measuring reaction rates, including gas collection, mass loss, and time-to-precipitate formation, are thoroughly explained and accompanied by visual examples. This resource also features interactive starter activities, extension challenges, and plenary tasks, ensuring comprehensive coverage of the topic while catering to varying student abilities. It is compatible with most devices, provided in a .pptx format, and can be used with software like Microsoft PowerPoint or Google Slides. Last updated on 12/12/24, this resource includes updates to video links and questions for better user experience. Perfect for teachers aiming to simplify complex chemistry concepts, this resource is aligned with standard curricula and designed to enhance both classroom and independent learning.
GCSE Chemistry Chemical Formulae and Structure of Ionic Compounds: Complete Lesson
Malachite44Malachite44

GCSE Chemistry Chemical Formulae and Structure of Ionic Compounds: Complete Lesson

(0)
This engaging PowerPoint lesson is designed to help students master the fundamental concepts of ionic compounds. Perfect for secondary school chemistry classes, it features clear explanations, practical examples, and interactive tasks that align with key curriculum standards. What’s Covered: Understanding Ionic Compounds: Explore the formation of ionic compounds and deduce their chemical formulae using examples like magnesium oxide and potassium chloride. Learn about polyatomic ions, including sulphate and nitrate. Ionic Bonding and Lattices: Examine the arrangement of ions in giant ionic lattices, focusing on sodium chloride’s 3D structure. Compare various models (2D, 3D, ball-and-stick, dot-and-cross), discussing their advantages and limitations. Learning Objectives: Deduce the formula of common ionic compounds. Represent ionic structures with models and diagrams. Understand the limitations of different representational methods. Interactive Activities: Starter questions and practice problems for deducing chemical formulae. Creative tasks like building ionic lattices with molymod kits. Exam-style questions to consolidate understanding. Why This Resource? Aligned with secondary school chemistry curricula, ensuring comprehensive coverage. Flexible usage: Ideal for guided lessons, homework, or revision. Promotes active learning through hands-on activities and real-world applications. File Type: PowerPoint (.pptx) Updated: December 2024 – Includes additional examples, enhanced visuals, and video integration for interactive learning. This resource is an excellent choice for teachers looking to make the topic of ionic compounds both accessible and engaging for their students!