Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Having taught in the UK and abroad, I've experienced teaching many different syllabi including SABIS, AQA, WJEC and Cambridge. I develop resources to help teachers model key concepts, provide practice for students and include answers to help students self-assess their work. Planning for a 27 lesson week can be stressful to say the least, so I hope you find my resources useful. Thank you for choosing my lesson/s, I hope they enrich your teaching practice and make your life easier.
Includes testing for:
Cations
Anions
Gas tests
Test for Water
Testing for Purity of Water
Flame Tests
Question on one side, answer on the other.
Print double sided (flip along long side of paper).
This resource is a comprehensive PowerPoint presentation designed to teach the fundamental concepts of electrolysis using molten ionic compounds. It is tailored for students studying electrochemistry and provides a detailed exploration of the processes at play during electrolysis.
The presentation begins with clear learning objectives, which include describing electrolysis in terms of ion movement in molten compounds, predicting products at the electrodes, determining whether reactions are oxidation or reduction, and writing half-equations for the reactions. These objectives ensure a structured approach to understanding the topic and align with curriculum standards.
To engage students, the resource includes starter activities that introduce key concepts such as the roles of electrodes (cathode and anode), the definition of electrolysis, and the identification of cations and anions in a given compound. These activities encourage critical thinking and prepare students for the main content.
The presentation delves into the electrolysis of specific molten compounds, such as lead bromide and potassium iodide, using real-world examples to explain key principles. It highlights the necessity of melting ionic compounds to free the ions, enabling them to conduct electricity. Each step of the process is explained in detail, including the formation of products at the electrodes and their classification as oxidation or reduction reactions.
Interactive content includes labeled diagrams, step-by-step breakdowns of electrode reactions, and the writing of half-equations for both the cathode and anode. For example, the reduction of lead ions (Pb²⁺) to lead atoms and the oxidation of bromide ions (Br⁻) to bromine molecules are clearly explained with equations and visuals. The importance of concepts like OILRIG (Oxidation Is Losing, Reduction Is Gaining) is reinforced throughout.
The resource concludes with review questions and challenges, allowing students to test their understanding of topics such as the products of electrolysis, the necessity of molten ionic compounds, and the reactions occurring at each electrode. The PowerPoint file format (.pptx) ensures accessibility and compatibility for teachers. This resource is a valuable teaching aid for educators seeking to provide a thorough and engaging explanation of electrolysis with molten compounds.
PowerPoint that covers the following learning objectives:
Investigate how light travels through a lens.
Describe the difference between a convex lens and a concave lens.
Identify the focal point in a light ray diagram of a convex lens.
This is made for a KS3 science class.
Includes questions, answers, diagrams and link to a virtual simulation.
PowerPoint that covers the following learning objectives:
Define the mass of an object.
Measure mass of an object using a mass balance.
Includes questions, pictures, instructions and a practical in which the students have to use mass balances to measure the mass of up to 20 objects.
There are questions that ask students to add masses of objects together, substract masses and work out the difference.
The results table, questions and space for answers are on the worksheet.
This is for a primary/early secondary class.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
PowerPoint that covers the following learning objectives:
Measure the temperature of a substance.
Plot a graph of temperature vs. time.
In this investigation, students will compare how a large beaker of hot water and a small beaker of hot water cool down differently. They will form a research question, hypothesis, fill in table of results, plot line graphs and form a conclusion.
PowerPoint includes research question, hypothesis, method, graphs and conclusion.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Practice calculating magnification, image size and real size with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Practice calculating number of moles, relative formula mass and mass with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Practice calculating the percentage by mass of an element in a compound with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Practice calculating percentage yield with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Practice calculating atom economy with these tiered questions. Answers included.
If you could spare 5 minutes, please review this resource, to help my online presence grow! :)
Quiz includes:
Reactivity series
Extracting metals
Displacement Reactions
Quiz is out of 28 marks, so half the lesson to do the quiz and the other half to go over answers.
Mark scheme is included.
24 mark quiz on the following topics:
Writing chemical formula for ionic compounds.
Properties and structure of ionic compounds.
Drawing ions and ionic bonding.
Describing how ionic bonds form.
Mark scheme included.