I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
I am currently a Lecturer in Engineering Design at a University, prior to this I worked in secondary schools as a specialist physics teacher. My experience from working at these levels of education has emphasised the need to ensure fundamentals in science are mastered by students for continued success in education & beyond. My resources aim to clearly communicate complex scientific principles through clear visuals and explanations - with well structured tasks to practice what has been learnt.
A completely resourced lesson on GCSE Physics P2 - Terminal Velocity including key content from AQA exam specification and relevant to Edexcel.
The starter begins with a question regarding throwing a penny off the Empire State Building - a common myth surrounding this which is dealt with during this lesson on terminal velocity.
Forces and size represented by arrows are quickly recapped and related to skydiving which allows for good class discussion.
A class activity is detailed which uses just a stopwatch, meter rule and cut-out provided. This task investigates air resistance and it's effect on time to fall to the ground. The conclusions drawn from this can lead to the class to summarise what air resistance is and how it increases and decreases.
Terminal velocity is then explained through an animation of a skydive which is summarised by the class.
An extended activity uses a v-t graph relating to a skydive with key questions to challenge pupils.
The lesson finishes with a TRUE or FALSE quiz and then revisiting the initial started question.
More P2 lessons to come
New GCSE AQA Physics lesson on 'Energy Demands & Resources (Fossil fuels, Nuclear Power & Biofuels)' written in line with new AQA Physics specification.
Starter uses a series of riddles for pupils to identify different energy resources to do with the lesson. The importance of fire is discussed for humans (this could also be linked with chemistry content on combustion, showing science links). Energy demands of the world are discussed and summarised to highlight what we need energy for and where it comes from in what proportions.
An Activity sheet included to identify key part of a fossil fuelled power station (although not necessarily required by AQA anymore).
Fossil fuels are covered in details and discussed the future issues with its usage, leading to Nuclear. Following description of Nuclear (with advantages and disadvantages) with an examiner tip in the note box - fossil fuels and nuclear power are contrasted.
Bio-fuels are reviewed as an alternative resources of energy and discussed a renewable and carbon neutral source.
Lesson concludes with a set of review questions on the topic which could also be used as a homework task.
Extra riddle question at the end.
Lesson Objectives:
1) Identify different ways of meeting our energy demands.
2) Explain how each major component of a fossil fuelled power station works..
3) Explain in further detail different methods meeting energy demands.
4) Discuss and compare the use fossil fuels, nuclear power and bio-fuels.
5 Lessons on GCSE AQA Physics 'Forces in Balance. Lessons include:
- Vectors and Scalars.
- Resultant Forces.
- Centre of Mass.
- Moment, Gear and Equilibrium.
- Resolution of forces (Parallelogram/Geometric method.
Please see individual item listing for details on each individual lesson.
ALL lessons have answer keys in the PowerPoint
5 lessons covering the unit of Wave Properties for AQA GCSE Physics.
Lesson include:
Properties of Waves
Reflection and Refraction of Waves
Sound
Ultrasound
Seismic Waves
Please read individual resources descriptions for each item in the bundle for further detail.
Completely resourced lesson on distance-time graphs with key content from AQA and Edexcel Physics.
Lesson begins with a review of the use of graphs to present data and relationships, highlighting key graph vocabulary and trends.
Speed, distance and time is briefly recapped with the equation and some simple questions.
An exercise in plotting distance-time graphs from a short description allows pupils to understand what different trends mean on a d-t graph by plotting them, themselves.
Following this it is explained in detail how a d-t graph gradient calculates speed by relating this clearly to the equation for speed.
A class experiment is detailed if you wish to allow your pupils to carry this out but if not another activity following summarises the same concepts through a pre-prepared worksheet.
A homework task is included that will require some modelling from the teacher.
Complete lesson on Energy Efficiency, Sankey Diagrams & Efficiency Calculation with key content from AQA Physics.
Starter uses a correct the statements challenge to recap previous content to this topic
Main includes a step by step guide to drawing Sankey diagrams with questions for pupils attempt following. Also covered is efficiency calculation.
Lesson concludes with independent task on comparing filament and CFL bulbs.
Included is a 6 mark exam question homework with peer marking description for use in following lesson (homework hand-in date).
Worksheet includes Sankey diagrams task and calculating efficiency task to be printed on one A4 sheet to save on printing. Set-up to print '2 pages per sheet' to produce one worksheet.
More lessons to in same format for P1.
https://www.tes.com/member/Nteach
Complete AQA GCSE Physics lessons on Electric Charges and Fields.
Starter begins with discussion of a popular lightning myth/misconception which will be revisited at the end of the lesson. The structure of the atom is reviewed leading to how atoms can gain a charge and therefore how objects can become charged. The main consists of two simple experiments for pupils to do using safe and simple equipment to explore statics. Students also explore electric fields which exist around charge objects and draw these (as required by new specification)
Questions on the Van der Graaf are included with links to videos and a simulator if the teacher doesn't have access to a Van der Graaf.
Lesson is consolidated by revisiting the starter reviewing pupil knowledge and also through exam style questions based on the specification and style of sample exam papers content.
Lesson Objectives:
1) Describe the structure of the atoms. (D)
2) Explain how an atom can be ‘charged’ and how an object can have a ‘charge’ (C)
3) Investigate how charged objects interact with each other due to electric fields. (B)
4)Apply you knowledge of ‘charges’ to explain static electricity. (A)
Note: This lesson is formatted is similar content to previosuly listed 'Statics lesson' but in the new Nteach style and also with new content relevant to the new specification for AQA GCSE Physics. The lesson will be updated as all lessons are as I create new , engaging and challenging content relevant to the subject.
2 New GCSE AQA Physics lesson on 'Heating and insulation' written in line with new AQA Physics specification.
Starter comprises of a series of questions reviewing the content from previous lessons on energy transfer by heating. The definition of insulators are quickly reviewed and this then leads to details of the required practical on insulation. Questioning is provided relating to AT 1 and AT5 before the experiment guidance is given. 3 different experiment approaches are provided: different materials, different number of layers and different starting temperature are given as varied choice of investigation. These link to the factors which affect rate of heat transfer across a material. Data analysis and conclusion guidance is provided.
The lesson continue by relating insulation to the home, detailing key methods of insulating the home.
A task sheet which can be used for homework is provided which ask pupils to identify how different things either keep or lose heat energy.
Lesson Objectives:
1) Review topic of energy transfer by heating.
2) Identify suitable apparatus to complete a scientific investigation.
3) Detail appropriate and safe use of apparatus to complete an investigation.
4) Analyse and interpret collected data to draw conclusions.
Resources for new GCSE AQA Physics 2016 specification.
Bundled lessons cover the Electricity resources content of the GCSE.
This includes:
- Electric Charges and fields
- Current and charge
- Potential Different and Resistance
- Component Characteristics
- Series Circuits
- Parallel Circuits
- AC/DC
- National Grid
- Cables and plugs
- Electrical Power and potential difference
- Electrical currents and energy transfer (charge)
For clear detail on aspects of each lesson please review each lesson bundled into the packaged to ensure it meets your requirements. I hope this gives you and your pupils a great start to the new Physics GCSE.
I do update each lesson in the bundle with new and varied content as I often revisit lessons to further improve them.
New GCSE AQA Physics lesson on 'Internal Energy' written in line with new AQA Physics specification.
Lesson Outline:
Starter discussed whether a glass of water has energy of not to see what conclusions pupils can draw on this from previous lessons. This leads to a view of a substance on a microscopic scale to highlight that the particles are moving, therefore pupils should be able to deduce must have energy in order to move. Internal energy is then shown to be this energy in substance due to kinetic energy and potential energy. After revisiting the starter how to increase internal energy is discussed The different states of matter are review again but now in relation to internal energy with helpful graphics to support these points. How much energy in a substance is related to specific heat capacity which is typically covered earlier in the course so this provides a great opportunity to review of this topic. Lesson concludes with review questions.
Lesson Objectives:
- Explain what is meant by internal energy.
- Identify and explain how you can increase internal energy.
- Relate internal energy to properties of solids, liquids and gases.
- Explain how particles in a gas exert a pressure.
New GCSE AQA Physics lesson on Forces and Elasticity written in line with new AQA Physics specification.
Lesson starts by discussing what elasticity is in relation to familiar, everyday objects which then challenge pupil thinking with ‘slo-mo’ videos of these objects being impacted.
Elasticity is then further explored with compression and tension in springs and also related to other objects.
To assist pupils in their understanding of the force extension graphs for materials proportionality is reviewed mathematically.
A class experiment is detailed using simple Physics equipment to test everyday materials for to produce a force-extension graph. Conclusions can then be drawn from the data produced in this experiment.
Hooke’s law is detailed and related to a simply spring extension experiment and used to highlight spring constants.
Plenary poses a summary question for pupils to answer with detailed responses showing their understanding of elasticity.
Learning Objectives:
- Identify objects in compression or tension.
- Explain what is meant by a proportional relationship.
- Describe an experiment to extension of an object due to force applied.
- Interpret and draw conclusions from a force-extension graph.
New GCSE AQA Physics lesson on ’ Pressure and Surfaces’ written in line with new AQA Physics specification. All questions provided with answers within power point.
Starter looks at a balloon being pressed down onto a bed of nails - details of how to set this up simply with thumbtacks (obvious as it is) can be found in the notes box.
Following this a problem of dog trapped on thin ice is presented for pupils to come up with potential rescue attempts to avoid breaking the ice. The concept of pressure is consolidated with the example of thumb tack being pressed into a wall - the equation for pressure is then detailed.
To make use of the pressure equation an elephant and person in stiletto heels are compared mathematically to find which exerts the greatest pressure. Pupils are then guided to calculate the amount of pressure they exert onto the floor whilst standing.
The lesson is concluded with a set of review question.
Lesson Objectives:
- State what pressure is and be able to calculate it.
- Identify the units for pressure.
- Explain the relationship between pressure, force and area.
- Apply knowledge of pressure to different problems.
5 Lessons on GCSE AQA Physics 'Forces and Motion. Lessons include:
- Forces and acceleration.
- Terminal velocity.
- Forces and Braking.
- Momentum.
- Impact Forces.
- Forces and Elasticity.
Please see individual item listing for details on each individual lesson.
ALL lessons have answer keys in the PowerPoint
New GCSE AQA Physics lesson on ’ Atmospheric Pressure’ written in line with new AQA Physics specification. All questions provided with answers within power point.
(Required for GCSE Physics only Higher tier)
Lesson Objectives:
- Explain how upthrust acts on an object in a fluid.
- Identify the key factors that contribute to upthrust of an object in a fluid.
- Relate pressure in a fluid to upthrust.
- Predict whether a variety of objects will float or sink.
NOTE: The lenses lesson (listed as lesson 4) had been missing from this bundle, this had now been rectified.
5 lessons covering the unit of Light and Lenses for AQA GCSE Physics.
Lesson include:
Reflection of Light (
Refraction of Light
Light and Colour
Lenses
Using Lenses
Please read individual resources descriptions for each item in the bundle for further detail.
New GCSE AQA Physics lesson on the generator effect written in line with new AQA Physics specification. All questions provided with answers within power point.
Explain what the generator effect is
Explain how potential difference can be induced in a wire
Identify what affects the size of induced potential difference in a generator
Detail how to deduce the direction of induced current
New GCSE AQA Physics lesson on the motor effect written in line with new AQA Physics specification. All questions provided with answers within power point.
Lesson Objectives:
Explain the ‘motor effect’;
Recall and use Flemings left-hand rule
State what is meant by magnetic flux density
Calculate the force on a current carrying wire
Detail how a simple electric motor works
New GCSE AQA Physics lesson on 'Reflection of Light (Diffuse and specular reflection) ’ written in line with new AQA Physics specification.
Lesson Objectives:
Identify and explain different methods of reflecting waves.
Investigate the law of reflection.
Draw ray diagrams for different objects.
Explain and draw virtual images.
Explain what happens to light rays when they reflect of different types of surfaces.
New GCSE AQA Physics lesson on 'Light and Colour ’ written in line with new AQA Physics specification.
Lesson Objectives:
Identify what is meant by the visible light spectrum.
Detail the different colours on the visible light spectrum and relate to wavelength.
Explain how surfaces appear to be certain colours.
Compare and contrast translucent and transparent objects and their interaction with light.
(upated 07/11/2019)
Completely resourced lesson on velocity-time graphs with key content from AQA and Edexcel Physics.
Lesson begins with a starter to get pupils thinking about acceleration whilst recapping terminal velocity.
A prompt questions focuses on cars 0-60 mph time so pupils to discuss what acceleration is and what affects it.
The acceleration equation is covered in detail clearly highlighting the units used - followed by questions to use the equation.
Speed and velocity are contrasted whilst explaining what is meant by vectors and magnitude.
The main task uses a movie car chase sequence for pupils to record the time between key incidents which are associated with a set velocity allowing a v-t graph to be produced, this allow for a discussion of v-t graph trends related to data. Key v-t trends are highlighted following this.
Acceleration is related to the gradient of a v-t graph very clearly as done in the d-t graph lesson. This allows for a more detailed analysis of the car chase v-t graph (worksheet included).
Plenary relates v-t graphs to d-t graphs and uses a v-t graph of a skydive for further questioning (also reviews terminal velocity).