Hero image

Paperfriendlyresources's Shop

Average Rating4.27
(based on 235 reviews)

Paperfriendlyresourcesuk New Resources Coming soon! PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.

371Uploads

318k+Views

259k+Downloads

Paperfriendlyresourcesuk New Resources Coming soon! PFR resources have been designed to ensure good quality teaching is not compromised by printing restrictions or buffering videos. Lessons that include worksheets have been created for teachers to print at least two copies to an A4 sheet.
AQA new specification-Sustainable food production-B18.12
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Sustainable food production-B18.12

(0)
Sustainable food production lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. This lesson Includes powerpoint timers, slide animations, past paper questions, self-assessment, interactive mark scheme, embedded videos and review. For general enquiries or support please email: Paperfriendlyresources@gmail.com NB: If you are unable to play embedded videos please view slide notes for link. * AQA spec link: 4.7.5; 3, 4 Relevant chapter: B18 Biodiversity and ecosystems. AQA Biology third edition textbook-Page 308-309 Students are required to know the following; Fish stocks in the oceans are declining. It is important to maintain fish stocks at a level where breeding continues or certain species may disappear altogether in some areas. Control of net size and the introduction of fishing quotas play important roles in conservation of fish stocks at a sustainable level. Students should be able to describe and explain some possible biotechnical and agricultural solutions, including genetic modification, to the demands of the growing human population. Modern biotechnology techniques enable large quantities of microorganisms to be cultured for food. The fungus Fusarium is useful for producing mycoprotein, a protein-rich food suitable for vegetarians. The fungus is grown on glucose syrup, in aerobic conditions, and the biomass is harvested and purified. A genetically modified bacterium produces human insulin. When harvested and purified this is used to treat people with diabetes. GM crops could provide more food or food with an improved nutritional value such as golden rice.
AQA new specification-Hormones and the menstrual cycle-B11.6
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Hormones and the menstrual cycle-B11.6

(1)
Hormones and menstrual cycle lesson created in accordance to the NEW AQA Specification (9-1) for my separates class (Year 10-KS4). Includes: slide animations, embedded video, worksheet and practice questions with mark scheme. This resource is suitable for combined science students. *Note-For higher tier only* AQA spec link:5.3.4 Relevant chapter: B11 -Hormonal coordination . AQA Biology third edition textbook-Page 170-171. *The new specification requires students to know the following; Students should be able to explain the interactions of FSH, oestrogen, LH and progesterone, in the control of the menstrual cycle. Students should be able to extract and interpret data from graphs showing hormone levels during the menstrual cycle.
AQA new specification-Exchanging materials-B1.10
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Exchanging materials-B1.10

(2)
Exchanging materials lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability separates class, although content can be adjusted to suit any ability. Includes: slide animations, practice questions with answers on slides, worksheet, and homework (with MS) AQA spec link: 4.1.3.1 Relevant chapter: B1 Cell structure and transport. AQA Biology third edition textbook-Page 22-23 Specification requires students to know the following; A single-celled organism has a relatively large surface area to volume ratio. This allows sufficient transport of molecules into and out of the cell to meet the needs of the organism. Students should be able to calculate and compare surface area to volume ratios. Students should be able to explain the need for exchange surfaces and a transport system in multicellular organisms in terms of surface area to volume ratio. Students should be able to explain how the small intestine and lungs in mammals, gills in fish, and the roots and leaves in plants, are adapted for exchanging materials. In multicellular organisms, surfaces and organ systems are specialised for exchanging materials. This is to allow sufficient molecules to be transported into and out of cells for the organism’s needs. The effectiveness of an exchange surface is increased by: •• having a large surface area •• a membrane that is thin, to provide a short diffusion path •• (in animals) having an efficient blood supply •• (in animals, for gaseous exchange) being ventilated.
AQA new specification-B17 Organising an ecosystem-Separate science bundle
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-B17 Organising an ecosystem-Separate science bundle

5 Resources
This bundle only contains the content for separate science students. It includes the B17 unit-Organising an ecosystem. All lessons have been done in accordance to the specification requirements and have been pitched to a higher ability class. Videos have been embedded for ease of use, and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 25% by purchasing this bundle :) Total = 5 lessons Lesson 1-Feeding relationships Lesson 2-Material cycling Lesson 3-The carbon cycle Lesson 4-Rates of dec omposition Lesson 5-Required practical-Decay Good luck with your lessons :)
AQA new specification-Growing bacteria in the lab-B5.3
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Growing bacteria in the lab-B5.3

(0)
NB: This is a BIOLOGY (SEPARATES) ONLY lesson Growing bacteria in the lab lesson created in accordance to the NEW AQA Specification (9-1). Includes: slide animations, embedded videos, differentiated questions and answers have also been included within the slides. This resource is NOT suitable for combined science students. AQA spec link: 4.1.1.6 Relevant chapter: B5-Communicable diseases . AQA Biology third edition textbook-Page 78-79. Bacteria multiply by simple cell division (binary fission) as often as once every 20 minutes if they have enough nutrients and a suitable temperature. Bacteria can be grown in a nutrient broth solution or as colonies on an agar gel plate. Uncontaminated cultures of microorganisms are required for investigating the action of disinfectants and antibiotics. Students should be able to describe how to prepare an uncontaminated culture using aseptic technique. They should be able to explain why: • Petri dishes and culture media must be sterilised before use to kill unwanted microorganisms • inoculating loops used to transfer microorganisms to the media must be sterilised by passing them through a flame • the lid of the Petri dish should be secured with adhesive tape to prevent microorganisms from the air contaminating the culture, and stored upside down • in school and college laboratories, cultures should be incubated at a maximum temperature of 25 °C.
AQA new specification-Removing waste products-B12.2
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Removing waste products-B12.2

(1)
Removing waste products lesson created in accordance to the NEW AQA Specification (9-1) for my separates class (Year 10-KS4). Includes: slide animations and worksheet. AQA spec link: 5.3.3 Relevant chapter: B12.2-Removing waste products . ( Note: This topic is for BIOLOGY only not for combined science students). AQA Biology third edition textbook-Page 184-185 *The new specification requires students to know the following; Students should be able to explain the effect on cells of osmotic changes in body fluids. Water leaves the body via the lungs during exhalation. Water, ions, and urea are lost from the skin in sweat. There is no control over water, ion, or urea loss by the lungs or skin. Excess water, ions, and urea are removed via the kidneys in the urine. If body cells lose or gain too much water by osmosis they do not function efficiently. The digestion of proteins from the diet results in excess amino acids which need to be excreted safely. In the liver these amino acids are deaminated to form ammonia. Ammonia is toxic and so it is immediately converted to urea for safe excretion.
AQA new specification-REQUIRED PRACTICAL 6-Photosynthesis-B8.2
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-REQUIRED PRACTICAL 6-Photosynthesis-B8.2

(1)
Photosynthesis required practical (RP 6). This practical was completed in one lesson, students were asked to construct a graph from their data for homework. AQA spec link: 4.4.1.1 Relevant chapter: B8 Photosynthesis. AQA Biology third edition textbook-Page 126-127 Students are required to know the following; investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed. AT skills covered by this practical activity: AT 1, 2, 3, 4 and 5.
AQA new specification-Principles of homeostasis-B10.1
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Principles of homeostasis-B10.1

(1)
Principles of homeostasis lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s, worksheet and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.5.1 Relevant chapter: B10 The human nervous system. AQA Biology combined edition textbook-Page 133-134 Students are required to know the following; Students should be able to explain that homeostasis is the regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes. Homeostasis maintains optimal conditions for enzyme action and all cell functions. In the human body, these include control of: • blood glucose concentration • body temperature • water levels. These automatic control systems may involve nervous responses or chemical responses. All control systems include: • cells called receptors, which detect stimuli (changes in theenvironment) • coordination centres (such as the brain, spinal cord and pancreas) that receive and process information from receptors • effectors, muscles or glands, which bring about responses which restore optimum levels.
AQA new specification-Feeding relationships-B16.1
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Feeding relationships-B16.1

(0)
Feeding relationships lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.7.2.1 Relevant chapter: B16 organising an ecosystem. AQA Biology combined edition textbook-Page 224-225 Students are required to know the following; Students should understand that photosynthetic organisms are the producers of biomass = for life on Earth. Feeding relationships within a community can be represented by food chains. All food chains begin with a producer which synthesises molecules. This is usually a green plant or alga which makes glucose by photosynthesis. Producers are eaten by primary consumers, which in turn may be eaten by secondary consumers and then tertiary consumers. Consumers that kill and eat other animals are predators, and those eaten are prey. In a stable community the numbers of predators and prey rise and fall in cycles. WS 1.2 Interpret graphs used to model predator-prey cycles. Students should be able to interpret graphs used to model these cycles.
AQA new specification-Diseases caused by fungi and protists-B5.8
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Diseases caused by fungi and protists-B5.8

(2)
This lesson has been created in accordance to the NEW AQA Specification (9-1) for my combined/additional science class (Year 9-KS4). Includes: slide animations, embedded video, worksheet and answers have also been included within the slides. This resource is suitable for separate science students. AQA spec link: 4.3.1.4 and 4.3.1.5 Relevant chapter: B5-Communicable diseases . AQA Biology third edition textbook-Page 88-89. *The new specification requires students to know the following; Rose black spot is a fungal disease where purple or black spots develop on leaves, which often turn yellow and drop early. It affects the growth of the plant as photosynthesis is reduced. It is spread in the environment by water or wind. Rose black spot can be treated by using fungicides and/or removing and destroying the affected leaves. The pathogens that cause malaria are protists. The malarial protist has a life cycle that includes the mosquito. Malaria causes recurrent episodes of fever and can be fatal. The spread of malaria is controlled by preventing the vectors, mosquitos, from breeding and by using mosquito nets to avoid being bitten.
AQA new specification-Material cycling-B17.2
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Material cycling-B17.2

(0)
Material cycling lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.7.2.2 Relevant chapter: B17 organising an ecosystem. AQA Biology third edition textbook-Page 278-279 Students are required to know the following; Explain the importance of the carbon and water cycles to living organisms. All materials in the living world are recycled to provide the building blocks for future organisms. The carbon cycle returns carbon from organisms to the atmosphere as carbon dioxide to be used by plants in photosynthesis. The water cycle provides fresh water for plants and animals on land before draining into the seas. Water is continuously evaporated and precipitated. Students are not expected to study the nitrogen cycle. Students should be able to explain the role of microorganisms in cycling materials through an ecosystem by returning carbon to the atmosphere as carbon dioxide and mineral ions to the soil.
AQA new specification-Distribution and abundance-B16.3
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Distribution and abundance-B16.3

(0)
Distribution and abundance lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.7.2.1 Relevant chapter: B16 Adaptations, interdependence and competitions. AQA Biology third edition textbook-Page 262-263 Students are required to know the following; A range of experimental methods using transects and quadrats are used by ecologists to determine the distribution and abundance of species in an ecosystem. In relation to abundance of organisms students should be able to: • understand the terms mean, mode and median •calculate arithmetic means
AQA new specification-B17 Biodiversity and ecosystems-Combined/Additional science bundle
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-B17 Biodiversity and ecosystems-Combined/Additional science bundle

6 Resources
This bundle only contains the content for COMBINED/ADDITIONAL science students. It includes the B17 unit-Biodiversity and ecosystems. All lessons have been done in accordance to the specification requirements and have been pitched to a higher ability class. Videos have been embedded for ease of use, and printer friendly resources attached. Search the individual lessons for more information on the lesson content. Save 20% by purchasing this bundle :) Total = 6 lessons These lessons are suitable to teach separate science. Lesson 1-The human population explosion Lesson 2-Land and water pollution Lesson 3-Air pollution Lesson 4-Deforestation and peat destruction Lesson 5-Global warming Lesson 6-Maintaining biodiversity Good luck with your lessons :)
AQA new specification-Pathogens and disease-B5.2
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Pathogens and disease-B5.2

(3)
Health and disease lesson created in accordance to the NEW AQA Specification (9-1) for my combined/additional science class (Year 9-KS4). Includes: slide animations, embedded video, worksheets and practice questions with answers. This resource is suitable for separate science students. AQA spec link: 4.3.1.1 Relevant chapter: B5-Communicable diseases . AQA Biology third edition textbook-Page 76-77. *The new specification requires students to know the following; Students should be able to explain how diseases caused by viruses, bacteria, protists, and fungi are spread in animals and plants. Pathogens are microorganisms that cause infectious disease. Pathogens may be viruses, bacteria, protists, or fungi. They may infect animals and can be spread by direct contact, by water, or by air. Bacteria and viruses may reproduce rapidly inside the body. Bacteria may produce poisons (toxins) that damage tissues and make us feel ill. Viruses live and reproduce inside cells, causing cell damage.
AQA new specification-Rates of decomposition-B17.4
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Rates of decomposition-B17.4

(1)
Rates of decomposition lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separate class only, although content can be adjusted to suit any ability. Required practical has been taught in a separate lesson. Includes powerpoint timers, slide animations, embedded video’s and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.7.2.3 Relevant chapter: B17 organising an ecosystem. AQA Biology Third edition textbook-Page 282-283 Students are required to know the following; Students should be able to explain how temperature, water and availability of oxygen affect the rate of decay of biological material. Students should be able to: • calculate rate changes in the decay of biological material Gardeners and farmers try to provide optimum conditions for rapid decay of waste biological material. The compost produced is used as a natural fertiliser for growing garden plants or crops. Anaerobic decay produces methane gas. Biogas generators can be used to produce methane gas as a fuel.
AQA new specification-Adult cell cloning B14.6
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Adult cell cloning B14.6

(0)
Adult cell cloning lesson created in accordance to the NEW AQA Specification (9-1). Designed for higher ability separates class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. NB: This lesson is for SEPARATE science ONLY AQA spec link: 4.6.2.5 Relevant chapter: B14 Variation and evolution. AQA Biology third edition textbook-Page 228-229. Students are required to know the following; Adult cell cloning: • The nucleus is removed from an unfertilised egg cell. • The nucleus from an adult body cell, such as a skin cell, is inserted into the egg cell. • An electric shock stimulates the egg cell to divide to form an embryo. • These embryo cells contain the same genetic information as the adult skin cell. • When the embryo has developed into a ball of cells, it is inserted into the womb of an adult female to continue its development. WS 1.3, 1.4 Explain the potential benefits and risks of cloning in agriculture and in medicine and that some people have ethical objections. There are links with this content to Advantages and disadvantages of sexual and asexual reproduction (biology only) and Selective breeding.
AQA new specification-Accepting Darwin's ideas-B15.3
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Accepting Darwin's ideas-B15.3

(0)
Accepting Darwin’s ideas lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class. Includes: embedded videos and timers, slide animations, practice questions with answers on slides, worksheet and an interactive quiz. NB: If you are unable to play videos a URL link can be found in the slide notes. **Please note the homework and markscheme from the lesson on theories of evolution (B15.2) has also been included in this resource. ** AQA spec link: 4.6.3.1 Relevant chapter: B15 Genetics and evolution. AQA Biology trilogy edition textbook-Page 238-239 Students are required to know the following; Darwin published his ideas in On the Origin of Species (1859). There was much controversy surrounding these revolutionary new ideas. The theory of evolution by natural selection was only gradually accepted because: • the theory challenged the idea that God made all the animals and plants that live on Earth • there was insufficient evidence at the time the theory was published to convince many scientists • the mechanism of inheritance and variation was not known until 50 years after the theory was published.
AQA new specification-DNA and the genome-B13.4
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-DNA and the genome-B13.4

(3)
DNA and the genome lesson created in accordance to the NEW AQA Specification (9-1). Designed for a separates class, although content can be adjusted to suit any ability. Includes: embedded videos and timers, slide animations, practice questions with answers on slides and an interactive quiz. AQA spec link: 6.1.4 Relevant chapter: B13 Genetics and reproduction. AQA Biology third edition textbook-Page 202-203. Specification requires students to know the following; Students should be able to describe the structure of DNA and define genome. The genetic material in the nucleus of a cell is composed of a chemical called DNA. DNA is a polymer made up of two strands forming a double helix. The DNA is contained in structures called chromosomes. A gene is a small section of DNA on a chromosome. Each gene codes for a particular sequence of amino acids, to make a specific protein. The genome of an organism is the entire genetic material of that organism. The whole human genome has now been studied and this will have great importance for medicine in the future. Students should be able to discuss the importance of understanding the human genome. This is limited to the: • search for genes linked to different types of disease • understanding and treatment of inherited disorders • use in tracing human migration patterns from the past.
AQA new specification-Infertility treatments-B11.8
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-Infertility treatments-B11.8

(3)
Infertility treatments lesson created in accordance to the NEW AQA Specification (9-1) for my separates class (Year 10-KS4). Includes: slide animations, embedded video, worksheet and practice questions with mark scheme. This resource is suitable for combined science students. *Note-For higher tier only* AQA spec link:5.3.6 Relevant chapter: B11.8-Infertility treatments . AQA Biology third edition textbook-Page 174-175. *The new specification requires students to know the following; Students should be able to explain the use of hormones in modern reproductive technologies to treat infertility. This includes giving FSH and LH in a ‘fertility drug’ to a woman. She may then become pregnant in the normal way. In Vitro Fertilisation (IVF) treatment: • IVF involves giving a mother FSH and LH to stimulate the maturation of several eggs. • The eggs are collected from the mother and fertilised by sperm from the father in the laboratory. • The fertilised eggs develop into embryos. • At the stage when they are tiny balls of cells, one or two embryos are inserted into the mother’s uterus (womb). Although fertility treatment gives a woman the chance to have a baby of her own: • it is very emotionally and physically stressful • the success rates are not high • it can lead to multiple births which are a risk to both the babies and the mother.
AQA new specification-The response to exercise-B9.2
PaperfriendlyresourcesPaperfriendlyresources

AQA new specification-The response to exercise-B9.2

(0)
The response to exercise lesson created in accordance to the NEW AQA Specification (9-1). Designed for a higher ability class, although content can be adjusted to suit any ability. Includes powerpoint timers, slide animations, embedded video's and mini review. NB: If you are unable to play embedded videos please view slide notes for link. AQA spec link: 4.4.2.2 Relevant chapter: B9 Respiration. AQA Biology third edition textbook-Page 136-137 Students are required to know the following; During exercise the human body reacts to the increased demand for energy. The heart rate, breathing rate and breath volume increase during exercise to supply the muscles with more oxygenated blood. If insufficient oxygen is supplied anaerobic respiration takes place in muscles. The incomplete oxidation of glucose causes a build up of lactic acid and creates an oxygen debt. During long periods of vigorous activity muscles become fatigued and stop contracting efficiently. AT 1, 3, 4 Investigations into the effect of exercise on the body. (HT only) Blood flowing through the muscles transports the lactic acid to the liver where it is converted back into glucose. Oxygen debt is the amount of extra oxygen the body needs after exercise to react with the accumulated lactic acid and remove it from the cells.