Hero image

SWiftScience's Shop

Average Rating4.26
(based on 751 reviews)

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.

619Uploads

785k+Views

456k+Downloads

I am a secondary school & A-level Science teacher, specialising in Biology. I am also an experienced AQA GCSE Biology Examiner. My resources contain a mix of Biology, Chemistry and Physics lessons aimed at meeting specification points for the new AQA Trilogy GCSE course and KS3 Activate course. All of my lessons include at least one opportunity for self-assessment, a range of activities to suit students of all abilities, a set of differentiated starter questions and a plenary.
NEW AQA GCSE (2016) Chemistry  - Extracting Aluminium
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Extracting Aluminium

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical changes, electrolysis and energy changes’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience Pupils will firstly need to brainstorm ideas about the uses of aluminium, they can discuss their ideas with their partners and complete a mind map in their books. Some examples can then be revealed using the PowerPoint slide and pupils can check how many they got right, filling in any they may have missed. Pupils will then watch a video on the extraction of aluminium, students will need to answer a set of questions using the information provided in the video. Their work can be self-assessed using the answers provided. Students will then need to summarise what they have learnt so far by completing a fill-in-the-blank task, students can check their work agaisnt the mark scheme provided. Next, students will be given a diagram of the electrolysis of aluminium oxide, pupils will need to complete this diagram by selecting the correct captions from a list provided on the board. Students can then check their work against the answers provided in the PowerPoint. The next task is a progress check, students will need to answer questions to assess their knowledge of what they have learnt so far this lesson. Pupils can then self or peer-assess their work using the answers provided. The plenary task is a 3-2-1 task, pupils will need to write 3 facts, 2 key words and one question to assess their peers knowledge of the topics covered this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Making Ammonia - The Haber Process
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Making Ammonia - The Haber Process

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the 'Earth’s Atmosphere’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an outline of why nitrogen so important to plants and how farming can disrupt the balance of nitrate ions in the soil, hence the need for efficient fertilisers. Firstly, pupils will watch a video on the Haber process - a way of turning nitrogen in the air into ammonia, the ammonia can then be used to produce fertilisers. Whilst students are watching the video they should be answering a set of questions which will be provided to them, this work can then be self-assessed using the mark scheme provided. Next, pupils are given a diagram of the Haber process as well as some jumbled up statements describing each step - they will need to arrange the statements in the correct order - assigned to the correct part of the diagram. This work can be self-assessed using the mark scheme provided. The next part of the lesson focuses on the reaction that takes place and the controlled conditions of the reaction vessel which ensures that the optimum temperature and pressure are maintained for the optimum yield of ammonia - without expending more energy than needed! The last part of the lesson is a set of exam-style questions, pupils will need to answer these in their books and they can then either peer or self-assess their work using the answers provided. The plenary task is for pupils to write a list of key words from the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Relative Formula Mass & Moles
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Relative Formula Mass & Moles

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with an introduction to relative atomic mass, including an explanation of how we can use the periodic table to find the atomic masses of different elements. In order to assess their understanding of this topic pupils will then complete a table identifying the atomic number, mass number and the number of electrons/protons/neutrons found within atoms of specific elements. This task can then be assessed using the answers provided in the PowerPoint presentation. Pupils will now think about what the formula of a chemical compound tells us about the elements found in that compound. Using examples pupils will be taught about formulae, they will then be given a list of formulae for various different chemical compounds and will need to list the different elements found in that compound as well as the number of atoms of each of the elements. This task can then be assessed using the answers provided. The next part of the lesson will focus on relative formula mass, pupils will be taught, using a worked example, how to calculate the relative formula mass for a chemical compound. They will then need to complete tasks involving the calculations of relative formula mass, once complete pupils can self-assess their work using the answers provided. The last part of the lesson focuses on moles, the definition is first introduced to pupils which can be explained further using the link the video included in the PowerPoint. Pupils are then shown how to calculate the number of moles of a substance using the relative formula mass and actual mass of a substance. Pupils will be then need to complete a set of calculations to work out the moles of different substances, this task can be assessed using the answers provided. Pupils are lastly shown how to rearrange this calculation where needed, they can then apply this skill to a new set of problems. The answers to which are included in the PowerPoint presentation, pupils can use this to assess their work. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW GCSE Chemistry (2016) - Alcohols, carboyxlic acids & esters
SWiftScienceSWiftScience

NEW GCSE Chemistry (2016) - Alcohols, carboyxlic acids & esters

(0)
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience
NEW AQA GCSE Trilogy (2016) Chemistry - Covalent bonding
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Covalent bonding

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a video on covalent bonding, pupils will need to watch the video and answer a set of questions. When pupils are finished their work can be marked using the answers provided. The next activity is a crossword on covalent bonding, this too can be self-assessed using the answers provided on the PowerPoint. The next part of the lesson focuses on simple covalent molecules, firstly pupils are introduced to the idea that covalent structures are either simple molecules or giant structures. Pupils will be shown dot and cross diagram of a hydrogen molecule and asked to have a go at drawing a dot and cross diagram of a chlorine molecule. Once this work has been checked, pupils are then shown how to draw a dot and cross diagram of a double bond and triple bond (oxygen molecule and nitrogen molecule), it may be beneficial for pupils to draw these diagrams in their books for future reference. The lesson now focuses on some of the properties of simple covalent molecules, then pupils will be asked to draw a dot and cross diagram to show the structure of water, methane and ammonia. Once this task is complete, students can assess their work using the answers provided on the PowerPoint presentation. The final task is a true or false task, pupils are given a set of statements about covalent bonding. They will need to identify if true or false, this can be done as a whole class using white-boards or in their books. The plenary task is for pupils to unscramble anagrams of words relating to the bonding topic. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Mixtures
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Mixtures

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.3 unit on ‘Separation Techniques. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap of particle arrangements in an element, compound and a mixture. Students will be asked to ‘Think > Pair > Share’ their ideas, drawing a diagram of the particle arrangement in each as an extra challenge. After a short discussion, the answers will be revealed so students can check their work. The next task requires students to organise a set of statements into two columns - those statements describing a mixture or describing a compound. This task can then be self-assessed using the mark scheme provided once complete. Students are now asked to ‘Think > Pair > Share’ their ideas about what the term ‘pure’ means. After a short class discussion, the definitions (along with examples) for pure and impure substances are provided. Students will now complete an investigation to test three different water samples for purity. Using a pH test and an evaporation test students need to decide which of the samples are pure and which are impure. Students will have the chance to report their findings to the rest of the classroom, explaining their thoughts on which samples were pure/impure. Lastly, students will watch a video on chemical tests used to check the purity of a substance. Students will need to answer a set of questions whilst watching this video, the answers to which are included in the PowerPoint so students can self-assess their work once it is complete. The plenary task requires students to spend a minute talking to the person next to them about what they have learned this lesson. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
KS3 ~ Year 8 ~ Solutions
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Solutions

(0)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.3 unit on ‘Separation Techniques. More Biology, Chemistry and Physics resources can be found in my TES Shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a description of a solution, students can make a note of this in their books and then ‘Think > Pair > Share’ their ideas about examples of solutions they know. After a short discussion in pairs and as a class, some example answers are revealed to students. Next, students are introduced to the key terms - solute, solvent and solution - given the example of salt being dissolved in water to produce a saltwater solution. The process of dissolving is explained using particle theory, using a particle diagram to help demonstrate the concept. Students will then be asked to come up with a role-play to demonstrate the process of dissolving, some groups can show this to the rest of the class. Students will now complete a fill-in-the-blank worksheet to assess their knowledge of what they have learned so far this lesson, this can be marked and corrected using the mark scheme provided. Lastly, students will be shown how to work out the total mass/volume of a solution given the mass/volume of the solute and solvent. Students will then work through a set of problems, the answers to which are included in the PowerPoint so students can self-assess their work using the mark scheme provided. The plenary task requires students to write a twitter message to summarise what they have learned this lesson, including #keywords. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated
NEW AQA GCSE Trilogy (2016) Chemistry - Titration practical & calculations HT
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Titration practical & calculations HT

(0)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW and specifically designed for higher tier GCSE chemistry students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with students learning how to calculate the concentration of a solution in mols/dm3 when you know the mass of the solute in the solution. Students learn the steps necessary to complete this calculation, they can then complete a set of problems. This work can be self-assessed using the answers provided in the PowerPoint presentation. Students are then asked to discuss how they might work out the mass of a solute in a solution when they know the volume and concentration of a solution. After a short class discussion, the PowerPoint reveals four steps students should work their way through when approaching a problem such as this one. Students are then given two further problems to have a go at, they should show their working at each step of the calculation. Answers to the questions, as well as working out, is included in the PowerPoint presentation. Students are then given a worksheet, including a worked example of how to use a titration to calculate the concentration of a unknown substance. Using the worked example as a guide, students should attempt to answer the questions on the worksheet. For lower ability students it will be worth going through the worked example on the board first, those very able students should be able to use the worked example as a guide when answering the other questions Once this task has been completed students should self-assess their work using the mark scheme provided. The last task is a titration practical, their is a worksheet included in the PowerPoint for students to use as guide when completing the practical - including an aim, equipment list, method and results table. Once they have completed the investigation they should be able to use the balanced symbol equation to calculate the concentration of sulfuric acid used in this titration. The plenary task is for pupils to write down 3 key words, 2 facts and a question to test their peers on what they have learned today. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Trilogy (2016) Chemistry - Forming ions
SWiftScienceSWiftScience

NEW AQA GCSE Trilogy (2016) Chemistry - Forming ions

(2)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Structure & Bonding’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a recap on the differences between elements, compound and mixture, pupils complete a task and self-assess their work. Pupils are then introduced to the idea of covalent bonding and ionic bonding as two forms of bonding and are reminded how to draw the electronic configuration of an atom, including a reminder of the rules around filling energy shells. Pupils will now watch a video on the formation of ions, whilst watching the video pupils will answer a set of questions and when finished pupils can assess their work using the answers provided in the PowerPoint. Next, pupils will be shown how to draw diagrams to demonstrate the formation of positive and negative ions, they can draw examples in their books for future reference. To assess their knowledge of this topic pupils will complete a set of questions including drawing a diagram to demonstrate the formation of an ionic bond between lithium and fluorine, this can then be self or peer assessed using the answers provided. The last task is for pupils to use their periodic table to draw the electronic structure of the ions formed from a potassium, oxygen, magnesium and calcium atom. This work will then be assessed using the answers provided. The plenary involves pupils picking a task, wither write a twitter message about what they have learnt or write a set of quiz questions to test peers on what they have learnt in the lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Exothermic & Endothermic Reactions
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Exothermic & Endothermic Reactions

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C3 ’Reactions’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with an introduction to different examples of exothermic reactions, this includes video links to more exciting exothermic reactions like the thermite reaction and the screaming jelly baby. Students are also told the definition for an exothermic reaction. Students are now asked to consider what an endothermic reaction is, now that they know the definition for an exothermic reaction. Students are asked to ‘think > pair > share’ their ideas, eventually feeding back into a class discussion and the definition can then be revealed, as well as two two examples. Students will now watch a video on exothermic and endothermic reactions, whilst watching the video they will answer a set of questions. Once this task has been completed, students can self-assess their work against the mark scheme provided on the PowerPoint. Students will now complete an investigation to identify whether a set of three chemical reactions are exothermic or endothermic. They will start the reaction and then measure the temperature over a set period of time, finally working out the change in temperature to determine which type of reaction has occurred. Students can follow instructions on the practical worksheet and record their results in a table drawn into their books. Finally, students will complete a ‘quick check’ task - whereby they will need to answer a question on the topic of the lesson, this can then be checked against the answer provided on the PowerPoint. The plenary task is an anagram challenge, students need to unscramble a set of anagrams which then spell out a set of key words from the last few lessons on reactions. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ Conservation of Mass
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ Conservation of Mass

(1)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C3 ’Reactions’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. Students will firstly be shown a demonstration of magnesium being burnt in air, students are asked to predict whether they think the mass of the product will increase, decrease or stay the same. Students are asked to explain their prediction. The demonstration is then carried out, students should record in their books the mass of the magnesium before burning and then the mass of the magnesium oxide after burning, from this they can deduce the mass of the oxygen needed to burn the magnesium. Students can then check their predictions to see if they were correct or not. Now, students can summarise what they have learned by completing a ‘fill-in-the-blank’ task which is a definition for the ‘conservation of mass’ in chemical reactions. This task can be self-assessed against the mark scheme provided. Students will now also complete a ‘Quick Check’ task where they are asked come questions to test their knowledge of what they have learned so far, this work can also be marked against the mark scheme provided. Students will not complete a match-up task, students are asked to complete the sentences by matching the correct phrases together. This helps students to explore the idea of the law of the conservation of mass, considering how this applies to reactions involving solids, liquids and gases. Again, the mark scheme for this task is included for students to check and correct their work. The latter part of the lesson is on balancing equations, students are firstly introduced to the process by which students should balance an equation, demonstrated by the example of magnesium + oxygen -> magnesium oxide. A few more examples are used to talk students through the process, then students will complete a step-by-step worksheet which introduces them to balancing equations at a basic level. The mark scheme for this task is included in the PowerPoint for students to self-assess their work. The plenary task requires students to complete a 3-2-1 reduction of the lesson, to include 3 facts 2 key words and 1 question to test their peers knowledge of what was learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW KS3 ~ Year 7 ~ Neutralisation
SWiftScienceSWiftScience

NEW KS3 ~ Year 7 ~ Neutralisation

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C4 ’Acids & Alkalis’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. This lesson begins with a recap on the pH scale, students are given some information about the pH scale and will need to answer a set of questions using this information. Next, students will be given a table of information about the pH of different substances, using this they will need to sort the substances into two groups in their books - acids or alkalis. This task can be self-assessed using the mark scheme once completed. Students will now conduct an investigation to determine what happens when an acid is mixed with an alkali. Students will follow the method provided on the PowerPoint, using this they should observe the universal indicator changing from red to green as a neutralisation reaction occurs. Students can then use the information provided on the PowerPoint to take notes on this topic. Next, students will watch a video on pH, they will need to answer a set of questions whilst watching the video. This activity can be self-assessed once complete, using the mark scheme provided. Lastly, students are provided with a set of information on the uses of neutralisation reactions. Students should read the information and then summarise what they have learned in three sentences. The plenary task requires students to write a twitter message to tell other people what they have learned this lesson, including #keywords! All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ Group 0 - The Noble Gases
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ Group 0 - The Noble Gases

(1)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.1 unit on ‘The Periodic Table’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. The lesson begins with an introduction to the elements found within Group 0 of the Periodic Table - The Noble Gases. Students will learn about some of the chemical properties of these gases within the introduction. Next, students will be given data on some of the physical properties of the Noble Gases. Students will be shown their melting points and boiling points and will need to answer some questions based on this data. Once this task has been completed, students will then self-assess their work using the mark scheme provided. Students will now learn about the uses of different gases of the Group 0 elements, students will each be given a piece of information on a particular gas. Students will now need to share information with each other in order to complete a summary table. This work can the be marked and corrected using the mark scheme that is provided in the PowerPoint. Students will now complete a ‘copy and correct’ task, students will need to copy the paragraph of information and correct any mistakes. The answers to this task can the be used by students to mark and correct their work. The students will now complete a ‘Who am I?’ task, students will be given a description of an element which will either be from Group 1, Group 0 or Group 7, students will need to decide which element it is describing. Once this task has been completed, students should then self or peer assess their work using the mark scheme provided. The plenary lesson requires students to summarise what they have learned in three sentences, using the key words provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry (2016) - The development of the atomic model
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - The development of the atomic model

(0)
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the 'Atomic Structure & Periodic Table' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience This lesson starts with a video about the developments in the atomic model starting from Greek philosophers to 20th Century scientists. Pupils are given a set of questions to answer whilst watching the video, this work can be self-assess using answers provided. Next, pupils are given a set of cards with bits of information about different scientists involved in the development of the model of the atom. Pupils should put these cards in order and then use the information on the cards to formulate a timeline in their books, they should use the information on the cards to add labels describing the work of each of the scientists. Once this work has been marked, pupils are then introduced to the idea of isotopes and ions. Pupils will then watch a video and will need to answer questions whilst watching and also complete a fill-in-the-blank summary sentence about what they have learnt. This work can be assessed using the answers provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry (2016) - Electronic Configuration
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - Electronic Configuration

(1)
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the 'Atomic Structure & Periodic Table' SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience First task is a true or false task about the structure of an atom just to remind pupils about what they already know about these sub-atomic particles. Then pupils are played a video about the rules regarding electronic configuration, with which they should fill in a worksheet, either completing sentences or answering questions. Once this is finished pupils will self-assess their work. Next, the rules of how many electrons each shell can hold is demonstrate using diagrams, pupils are given examples to further consolidate this information. Next, pupils are given a table with different elements listed, they will need to identify the mass number, atomic number, draw and write out the electronic configuration for each element. This can be assessed once it has been completed. The next task is an extension of what has just been completed, pupils are given a worksheet where they need to fill in the electron shells for the first 20 elements as well as write out the electronic configuration. Again, pupils will be provided with the answers to mark this work. The final two activities focuses on the importance of how many electrons are in the outer shell of an atom of an element and what this means for the reactivity of this element. Pupils will watch a further video and also complete fill-in-the-blank sentences to summarise what they have learnt. The plenary task is a set of graded questions about atomic structure. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA Trilogy GCSE (2016) Chemistry - Atom Economy HT
SWiftScienceSWiftScience

NEW AQA Trilogy GCSE (2016) Chemistry - Atom Economy HT

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Chemical calculations’ SoW, specifically designed for higher tier ‘chemistry only’ students. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson begins with a video on atom economy, pupils will answer a set of questions whilst watching the video which can be assessed using the answers provided. Pupils will then be taken through a worked example, step-by-step, to show how you are able to calculate atom economy once you know the desired product of a given reaction. Pupils will then need to use this worked example to come up with their own step-by-step checklist of tasks which need to be completed to work out the atom economy of a reaction. This can be checked against a list provided on the following PowerPoint slide. Pupils will then be given a list of questions on atom economy, they will need to show their working for each of the problems. Once the task has been completed pupils can check their work against the answers provided on the PowerPoint presentation. The next task is an exam-style question on atom economy, pupils should complete this in their books (and on their own, in silence for those higher ability classes), once complete this can be assessed against the mark scheme. The last task is for pupils to come up with five exam questions on atom economy, including a mark scheme for each question. The plenary task is for pupils to complete one of the example sentences, e.g. ‘I have understood this…’, ‘I still don’t understand…’. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 7 ~ More Changes of State
SWiftScienceSWiftScience

KS3 ~ Year 7 ~ More Changes of State

(0)
This lesson is designed for the Activate KS3 Science Course, specifically Year 7 C1.1 ’Particles & their Behaviour’ For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. Students will firstly watch a video on the changes of state, this outlines processes students have covered in previous lessons as well as new processes such as evaporation, condensation and sublimation. Whilst watching the video, students will need to answer a set of questions, this work can then be self-assessed using the mark scheme provided. Students will now need to copy and complete a diagram to demonstrate the changes of state which occur between solids, liquids and gases. This work can be assessed using the mark scheme provided once it is complete. Students are now given an explanation of evaporation using the particle model, students can take notes on this process - including a particle diagram to depict the process. After this students are given a set of statements which either describe the process of boiling or the process of evaporation, students should sort these statements into the correct columns. The answers for this task are included on the PowerPoint for students to assess their work. Students will now be asked to ‘Think > Pair > Share’ their ideas on the factors which could affect the rate of evaporation. Once students have had a chance to discuss their thoughts, they should feed back to the class before the answers are revealed. Lastly is a ‘true or false’ assessment task, students need to read the statements and decide whether they are true or false. This work can be assessed using the mark scheme provided. The plenary requires students to spend a minute talking to the person next to them about what they have learned this lesson. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE (2016) Chemistry  - Cracking hydrocarbons
SWiftScienceSWiftScience

NEW AQA GCSE (2016) Chemistry - Cracking hydrocarbons

(1)
This lesson is designed for the NEW AQA Trilogy Chemistry GCSE, particularly the ‘Organic Chemistry’ SoW. Firstly, students asked to think about a question that oil companies face - what to do with longer chain hydrocarbons which are in less demand than smaller chain hydrcarbons? Pupils can share their ideas in pairs, then as a class, before being introduced to the process of cracking. Next, as a recap of the structure of alkanes pupils will need to use ‘Molymod’ kits to make the first four alkanes in the homologous series, they will also need to complete a table to identify the structural & displayed formulae for each. This work can be self-assessed using the mark scheme provided. Now pupils are introduced to the process and products of cracking, students will then be given a set of hydrocarbons which are being ‘cracked’ with one of the products identified, they will need to identify the other product and also determine if it would be an alkane or an alkene. Once complete, this work can be self-assessed using the mark scheme provided. The next part of the lesson focuses on the structure and properties of alkenes, students will firstly be given a set of facts about alkenes which they can take notes from. Next, students will watch a video about alkenes, they will be provided with a set of questions that they need to answer using this video. This work can be self-assessed using the answers provided. Using what they have learned in this video, the teacher will conduct a demonstration which tests four unknown substances with bromine water - pupils will need to record their results in a table and determine whether the unknown substances are alkenes or alkanes. Pupils will lastly complete a ‘Quick Check’ task, this is a set of questions which will summarise what pupils have learned during the lesson. They will be able to peer or self-assess their work using the answers provided. The plenary task is for pupils to sum up what they have learned this lesson in three sentences, using the list of key words provided. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
KS3 ~ Year 8 ~ The Carbon Cycle
SWiftScienceSWiftScience

KS3 ~ Year 8 ~ The Carbon Cycle

(2)
This lesson is designed for the KS3 Year 8 Science course, specifically the C2 1.4 unit on ‘The Earth’. For more lessons designed for KS3 and KS4 please visit my shop at: https://www.tes.com/teaching-resources/shop/SWiftScience. Students will firstly be introduced to carbon as being one of the main constituents of life, as it is present within many molecules inside the human body - DNA, carbohydrates, fats & proteins. Students will also be introduced to the idea of ‘carbon sinks’. Students will now watch a video on the carbon cycle, students will need to answer a set of questions whilst watching this video. This task can then be self-assessed using the mark scheme provided. Next, students will be given a ‘fill-in-the-blank’ task to complete using the key words provided on the PowerPoint presenation. Students can self-assess their work using the mark scheme provided once this task is complete. Next, students will watch another video on the processes involved in the Carbon Cycle. Whilst watching this video they will be given a number of captions, which they will need to use in oder to fill in blanks on a worksheet. This task can be self-assessed using the mark scheme provided, once it is complete. Lastly, students will be given a series of pictures and words/descriptions which they need to use in order to construct their own poster of the carbon cycle, they will need to add arrows to demonstrate where the carbon is moving from and to. This task can be self-assessed using the mark scheme provided on the PowerPoint presentation. The final task requires students to read of piece of information, using this they should discuss and write down some changes that we could implement at home, and on a national scale, to help reduce our carbon emissions. The plenary is a ‘pick a plenary’ task, students will either choose to write down a summary of what they have learned this lesson in three sentences, or they may choose to write definitions for a set of key words that are provided. All resources are included at the end of the presentation, thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)
NEW AQA GCSE Chemistry (2016) - Mendeleev & the Periodic table
SWiftScienceSWiftScience

NEW AQA GCSE Chemistry (2016) - Mendeleev & the Periodic table

(4)
This lesson is designed for the NEW AQA Chemistry GCSE, particularly the ‘Atomic Structure & Periodic Table’ SoW. For more lessons designed to meet specification points for the NEW AQA Trilogy specifications for Biology, Chemistry and Physics please see my shop: https://www.tes.com/teaching-resources/shop/SWiftScience The lesson starts with a video about Mendeleev and the development of the periodic table, pupisl should answer questions alongside watching this video. After this work has been self-assessed pupils will be given an information sheet in pairs, this can be tag read as a class for lower ability pupils. Using this information pupils will need to answer a set of questions, they can complete these tasks in their book and once finished this work can be self-assessed using the answers provided. The next part of the lesson focuses on metals vs. non-metals, pupils will be introduced to the idea that the periodic table is split into two groups and will then need to use a poster activity to summarise the differences in properties between these two groups. Once this work has been self-assessed, pupils will then be given another set of information about different types of metals and pupils will use this information to complete a worksheet. The plenary activity is a an exit card where pupils will need to summarise what they have learnt by writing down three key words, one fact and one question on a piece of paper which can be handed to the teacher as they leave. All resources are included at the end of the presentation. Thanks for looking, if you have any questions please let me know in the comments section and any feedback would be appreciated :)