Hero image

Teach Science & Beyond

Average Rating4.78
(based on 27 reviews)

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!

258Uploads

129k+Views

83k+Downloads

Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Buffer Solution Calculations 1 (AQA)
TeachScienceBeyondTeachScienceBeyond

Buffer Solution Calculations 1 (AQA)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Buffer Solution Calculations (Suitable for the AQA Specification) By the end of this lesson KS5 students should be able to: To calculate the pH of a buffer solution containing a weak acid and the salt of a weak acid by using the Ka expression and pH equation To calculate equilibrium concentrations, moles or mass of the components of a weak acid-salt of a weak acid buffer solution Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Amino Acids And Their Reactions
TeachScienceBeyondTeachScienceBeyond

Amino Acids And Their Reactions

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Amino Acids And Their Reactions By the end of this lesson KS5 students should be able to: To know the general formula for an α-amino acid as RCH(NH2)COOH To understand the following reactions of amino acids: (i) reaction of the carboxylic acid group with alkalis and in the formation of esters (ii) reaction of the amine group with acids Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Practical Skills for Organic Synthesis (Yr12)
TeachScienceBeyondTeachScienceBeyond

Practical Skills for Organic Synthesis (Yr12)

(0)
A structured KS5 lesson (Yr12) including starter activity, discussion questions, videos and main work task all with answers included on Practical Skills for Organic Synthesis. Suitable for the OCR specification. By the end of this lesson KS5 students should be able to: To demonstrate knowledge, understanding and application of the use of Quickfit apparatus for distillation and heating under reflux To understand the techniques for preparation and purification of an organic liquid including: use of a separating funnel to remove an organic layer from an aqueous layer drying with an anhydrous salt redistillation Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Acid-Base Titration Procedures
TeachScienceBeyondTeachScienceBeyond

Acid-Base Titration Procedures

(0)
A complete KS5 lesson including starter activity, main work task and answers on acid-base titration procedures By the end of this lesson KS5 students should be able to: Outline the techniques and procedures used when preparing a standard solution of required concentration Outline the techniques and procedures used when carrying out acid–base titrations Determine the uncertainty of measurements made during a titration practical All tasks have worked out answers which will allow students to self assess their work in the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Buffer Solution Calculations 2 (AQA)
TeachScienceBeyondTeachScienceBeyond

Buffer Solution Calculations 2 (AQA)

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Buffer Solution Calculations (part 2) (Suitable for the AQA Specification) By the end of this lesson KS5 students should be able to: To calculate changes in pH when a small amount of acid or alkali is added to an acidic buffer solution Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry: Fractional Distillation of Crude Oil
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Fractional Distillation of Crude Oil

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson fractional distillation of crude oil By the end of the lesson students should be able to: Describe what crude oil contains and to understand its uses Explain how crude oil is separated into useful fractions on an industrial scale Explain how crude oil is separated into useful fractions on an industrial scale Students will be able to take rich notes on fractional distillation of crude oil, building on their KS4 knowledge on this topic The teacher will be able to quickly assess students’ understanding of fractional distillation of crude oil by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Calorimetry
TeachScienceBeyondTeachScienceBeyond

Calorimetry

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Calorimetry By the end of this lesson KS5 students should be able: LO1: To determine enthalpy changes directly from appropriate experimental results, including use of the relationship q=mcΔT LO2: To know the techniques and procedures used to determine enthalpy changes directly using a coffee cup calorimeter LO3: To know the techniques and procedures used to determine enthalpy changes indirectly using a copper calorimeter The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Qualitative Analysis of Ions
TeachScienceBeyondTeachScienceBeyond

Qualitative Analysis of Ions

(0)
A structured theory lesson including starter activity and main work tasks all with answers on Qualitative Analysis of Ions By the end of this lesson KS5 students should be able to: To carry out test tube reactions and record observations to determine the presence of the following anions : CO32- SO42- , Cl-, Br-, and I- To carry out test tube reactions and record observations to determine the presence of the following cations: NH4+, Fe2+, Fe3+, Mn2+ and Cu2+ To construct ionic equations to explain the qualitative analysis tests of cations and anions All tasks have worked out answers, which will allow students to self assess their work during the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
AS Chemistry Required Practical 1 (AQA):  Making a volumetric solution & an acid-base titration
TeachScienceBeyondTeachScienceBeyond

AS Chemistry Required Practical 1 (AQA): Making a volumetric solution & an acid-base titration

(0)
Whole lesson on planning for the AQA KS5 chemistry required practical 1 - how to make up a volumetric solution and how to carry out an acid-base titration In this lesson the teacher will be able to: address the aims of the required practical address what key practical skills will be assessed How students should carry out the practical How students should record results and make observations Post experimental quesitons are also included which will allow students to determine the unknown concentration of the base and to also consider issues with error in the experiment It’s recommended that the teacher carries out a demonstration during this lesson or has the equipment pieces on display for students to see Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Precipitation and Ligand Substitution Reactions
TeachScienceBeyondTeachScienceBeyond

Precipitation and Ligand Substitution Reactions

(0)
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Precipitation & Ligand Substitution Reactions. All tasks have worked out answers, which will allow students to self assess their work during the lesson ** By the end of this lesson KS5 students should be able to: LO1: To recall the colour changes and observations of reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ with aqueous sodium hydroxide and ammonia (small amounts and in excess) LO2: To construct ionic equations for the precipitation reactions that take place LO3: To construct ionic equation of the ligand substitution reactions that take place in Cu2+ ions and Cr3+ ions LO4: To explain the biochemical importance of iron in haemoglobin, including ligand substitution involving O2 and CO** **Note: This lesson includes 15 ligand substitution & precipitation reactions students need to remember- students are advised to create flashcards for these reactions (this can be completed as a flip learning homework task). Creation of flashcards should be followed up with a practical lesson on precipitation and ligand substitution reactions- see my TES shop for this practical lesson ** Alternatively: To save students time you can buy this resource with includes 23 printable flashcards of all the transition element reactions: precipitation, ligand substitution and redox reactions (click below for this resource): https://www.tes.com/teaching-resource/resource-12637622 Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Covalent and Dative Covalent Bonding
TeachScienceBeyondTeachScienceBeyond

Covalent and Dative Covalent Bonding

(0)
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Covalent and Dative Covalent Bonding By the end of this lesson KS5 students should be able: To know covalent bonding as electrostatic attraction between a shared pair of electrons and the nucleus To construct dot and cross diagrams of molecules and ions to describe single and multiple covalent bonding To apply the term average bond enthalpy as a measurement of covalent bond strength To know what a dative covalent bond is To construct dot and cross diagrams of molecules and ions to describe dative covalent bonding Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: Reactions of Halide Ions
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: Reactions of Halide Ions

(0)
A well structured lesson including starter activity and plenary task on reactions of halide ions. By the end of the lesson students should be able to: Describe an experiment to identify sodium halides with sulfuric acid (evidence of trend in reducing power) Describe an experiment to identify metal halides with silver ions Analyse various experiments (in questions) based on identifying halide ions Students will be able to take rich notes throughout the lesson Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
AS Chemistry: The Halogens (Trends in Physical & Chemical Properties)
TeachScienceBeyondTeachScienceBeyond

AS Chemistry: The Halogens (Trends in Physical & Chemical Properties)

(0)
A well structured lesson including starter activity, mini AfL work tasks with answers, and plenary task on trends of physical and chemical properties of halogens By the end of the lesson students should be able to: To describe and explain the trend in electronegativity, boiling and melting points of the halogens To describe and explain the trend in oxidising ability of halogens and reducing ability of the halide ions To outline experiments to support the trend in oxidising ability of halogens Students will be able to take rich notes on this topic The teacher will be able to quickly assess students’ understanding on trends of halogens by carrying our mini AfL tasks either on mini white boards or in students’ books Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
GCSE Combined Science: Variation (Biology)
TeachScienceBeyondTeachScienceBeyond

GCSE Combined Science: Variation (Biology)

(0)
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS4 GCSE lesson on variation. Main work task is differentiated with sentence starters for the 6 mark exam question By the end of the lesson students should be able to: Identify variation causes by genes and by the environment Describe how variation contributes to an organism’s survival Explain the mechanisms of genetic variation Students will be able to take rich notes on variation, building on their KS3 knowledge on this topic The teacher will be able to quickly assess students’ understanding of variation by carrying our mini AfL questions using A,B,C cards or mini white baords The lesson ends with a main work task for students to complete. Students will be able to self or peer assess their answers to this task using the detailed answers provided Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Carbon-13 NMR Spectroscopy
TeachScienceBeyondTeachScienceBeyond

Carbon-13 NMR Spectroscopy

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Carbon-13 NMR Spectroscopy By the end of this lesson KS5 students should be able to: To analyse a carbon-13 NMR spectrum of an organic molecule to make predictions about: The number of carbon environments in the molecule The different types of carbon environment present from chemical shift values Possible structures for the molecule Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Benzene and its structure
TeachScienceBeyondTeachScienceBeyond

Benzene and its structure

(0)
Well structured KS5 Lesson on Benzene and its structure. The lesson contains starter activities, discussion questions and mini AfL quizzes and practice questions, all with answers included By the end of the lesson students should: To describe the KekulĂ© model of benzene To describe the delocalised model of benzene in terms of P orbital overlap forming a delocalised π system To compare the KekulĂ© model of benzene and the delocalised model of benzene 4.To explain the experimental evidence which supports the delocalised model of benzene in terms of bond lengths, enthalpy change of hydrogenation and resistance to reaction Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Testing for Carbonyl Compounds
TeachScienceBeyondTeachScienceBeyond

Testing for Carbonyl Compounds

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on the Testing for Carbonyl Compounds By the end of this lesson KS5 students should be able to: To understand the use of Tollens’ reagent to: (i) detect the presence of an aldehyde group (ii) distinguish between aldehydes and ketones, explained in terms of the oxidation of aldehydes to carboxylic acids with reduction of silver ions to silver To understand the use of 2,4-dinitrophenylhydrazine to: (i) detect the presence of a carbonyl group in an organic compound (ii) identify a carbonyl compound from the melting point of the derivative Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
Phenols
TeachScienceBeyondTeachScienceBeyond

Phenols

(0)
A well structured KS5 Lesson on Phenols. The lesson contains a starter activity, mini AfL questions and practice questions, all with answers included By the end of the lesson students should: To recall and explain the electrophilic substitution reactions of phenol:  with bromine to form 2,4,6-tribromophenol (ii)  with dilute nitric acid to form a mixture of 2-nitrophenol and 4-nitrophenol (j)  To explain the relative ease of electrophilic substitution of phenol compared with benzene, in terms of electron pair donation to the π-system from an oxygen p-orbital in phenol To understand the weak acidity of phenols shown by its neutralisation reaction with NaOH but absence of reaction with carbonates Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons,including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Condensation Polymers
TeachScienceBeyondTeachScienceBeyond

Condensation Polymers

(0)
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Condensation Polymers By the end of this lesson KS5 students should be able to: 1.To know that condensation polymerisation can lead to the formation of i) polyesters ii) polyamides 2. To predict from addition and condensation polymerisation: i) the repeat unit from a given monomer(s) (ii) the monomer(s) required for a given section of a polymer molecule (iii) the type of polymerisation 3. To understand the acid and base hydrolysis of i) the ester groups in polyesters ii) the amide groups in polyamides Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
The Reactions of Benzene
TeachScienceBeyondTeachScienceBeyond

The Reactions of Benzene

(0)
Well structured KS5 Lesson on The Reactions of Benzene. The lesson contains starter activities, discussion questions and mini AfL questions and practice questions, all with answers included By the end of the lesson students should: To understand the electrophilic substitution of aromatic compounds with: (i) concentrated nitric acid in the presence of concentrated sulfuric acid (ii) a halogen in the presence of a halogen carrier (iii) a haloalkane or acyl chloride in the presence of a halogen carrier (Friedel–Crafts reaction) and its importance to synthesis by formation of a C–C bond to an aromatic ring To construct the mechanism of electrophilic substitution in arenes Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above