Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
Over 200 resources available for KS3-KS4 Science, KS5 Chemistry and Whole School! Lesson resources are suitable for live lessons in school, remote teaching at home or independent student study. It’s your choice how you use them 😊 Don’t forgot to explore my free resources too!
A structured KS5 lesson including starter activity and AfL work tasks with answers included on Standard Electrode & Cell Potentials (Part 1 of 2)
By the end of this lesson KS5 students should be able:
**To describe techniques and procedures used for the measurement of :
**i) Cell potentials of metals or non-metals in contact with their ions in aqueous solution
**ii) Ions of the same element in different oxidation states in contact with a Pt electrode
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, and main work tasks all with answers on Disproportionation & The Uses of Chlorine
By the end of this lesson KS5 students should be able to:
To explain the term disproportionation
To explain how the reaction of chlorine with water or cold dilute sodium hydroxide are examples of disproportionation reactions
To evaluate the uses of chlorine (How Science Works)
All tasks have worked out answers, which will allow students to self assess their work during the lesson
For the 3rd learning objective, students will have an opportunity to explore the uses of chlorine beyond the curriculum by completing a group research task based on the following OCR specification point:
HSW9,10,12 Decisions on whether or not to chlorinate water depend on balance of benefits and risks, and ethical considerations of people’s right to choose. Consideration of other methods of purifying drinking water.
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on Water of Crystallisation (Formula of Hydrated Salts)
By the end of the lesson students should be able to:
To know the terms anhydrous, hydrated and water of crystallisation
To calculate the formula of a hydrated salt from given percentage composition or mass composition
To calculate the formula of a hydrated salt from experimental results
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, mini AfL work tasks with answers, main work tasks with answers for a KS5 lesson on moles and volumes (solutions and gas volumes)
By the end of the lesson students should be able to:
To calculate the amount of substance in mol, involving solution volume and concentration
To understand the terms dilute, concentrated and molar
To explain and use the term molar gas volume
To calculate the amount of substance in mol, involving gas volume
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and main work task all with answers on Metallic Bonding and Structure
By the end of this lesson KS5 students should be able to:
To describe the structure of metals
To explain metallic bonding as strong electrostatic attraction between cations and delocalised electrons
To explain the physical properties of giant metallic structures
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, risk assessment and post practical plenary questions on Chemistry Required Practical :Preparing a pure, dry sample of a soluble salt from an insoluble oxide or carbonate
Lesson includes lab report for students to fill in
By the end of this lesson KS4 students should be able to:
→ Describe a practical procedure for producing a salt from a solid and an acid
→ Explain the apparatus, materials and techniques used for making the salt
→ Describe how to safely manipulate apparatus and accurately measure melting points
This lesson should be taught as a practical lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks Ions & The Periodic Table. All tasks have answers included.
By the end of this lesson KS5 students should be able to:
To predict the ionic charge of ions based on the position of the element in the periodic table
To recall the names of common atomic and molecular ions
To be able write the formula of ionic compounds
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A well structured lesson including starter activity and mini AfL questions on relative atomic mass and relative formula mass. Suitable for AQA GCSE Chemistry and Combined Science (higher tier and foundation)
The lesson begins with a short starter task (DO NOW) on understanding the numbers in the periodic table
By the end of this lesson KS4 students should be able to:
To identify the relative atomic mass of an element from the periodic table
To be able to define the term relative atomic mass
To calculate relative formula masses from atomic masses
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
Well structured Year 13 revision lesson on Redox Titrations. This lesson contains a starter activity on an exam question on redox equations and qualitative analysis followed by 4 exam style questions on unstructured redox titration questions. Model answers are included for all questions.
By the end of the lesson students should be able to:
To calculate unstructured titration questions based on experimental results of redox titrations involving Fe2+ /MnO4- and its derivatives
To calculate unstructured titration questions based on experimental results of redox titrations involving Fe2+ /Cr2O72- and its derivatives
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, main work task and (all answers included) on the States of Matter (KS3 chemistry)
This lesson is a great introduction to the Particle Model Topic in KS3 Chemistry
Students are introduced to the topic with a starter activity on solids, liquids and gases
By the end of the lesson students should be able to:
State examples of solids, liquids and gases
Describe solids, liquids and gases in terms of the particle model
Compare the different properties of solids, liquids and gases based on the particle model
Teacher is able to assess students understanding and progress through an interactive AfL task which can completed using A,B,C cards or on mini white boards
Students then complete a 20-30 minutes main work task (answers are provided for student self or peer assessment)
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks and main work tasks on Transition Metals & Redox Reactions. All tasks have worked out answers, which will allow students to self assess their work during the lesson
By the end of this lesson KS5 students should be able to:
LO1. To interpret the redox reactions and accompanying colour changes for:
(i) interconversions between Fe2+ and Fe3+
(ii) interconversions between Cr3+ and Cr2O72−
(iii) reduction of Cu2+ to Cu+
(iv) disproportionation of Cu+ to Cu2+ and Cu
LO2. To interpret and predict redox reactions and accompanying colour changes of unfamiliar reactions including ligand substitution, precipitation and redox reactions
NOTE: 23 printable flashcards of all the transition element reactions: precipitation, ligand substitution and redox reactions is available here
https://www.tes.com/teaching-resource/resource-12637622
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Carboxylic Acids and Esters. Suitable for AQA A level Chemistry
By the end of this lesson KS5 students should be able to:
To know how to draw and name carboxylic acids (Y12 recap)
To construct equations for the reaction of carboxylic acids with carbonates based on their weak acidic properties
To know how to name and draw esters
To know how esters are formed from the reaction of carboxylic acids with alcohols
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured KS5 lesson including starter activity and AfL work tasks on Storage and Fuel Cells
**By the end of this lesson KS5 students should be able to:
**LO1: To understand the application of the principles of electrode potentials to modern storage cells
**LO2: To explain that a fuel cell uses the energy from a reaction of a fuel with oxygen to produce a voltage
**LO3: To derive the reactions that take place at each electrode in a hydrogen fuel cell
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on the Reduction of Aldehydes and Ketones. Suitable for AQA A level Chemistry
By the end of this lesson KS5 students should be able to:
To review the oxidation of alcohols using Cr2O72-/H+ to form aldehydes, ketones and carboxylic acids
To understand nucleophilic addition reactions of aldehydes and ketones with NaBH4 to form alcohols
To construct the mechanism for nucleophilic addition reactions of aldehydes and ketones with NaBH4
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on the synthesis of hydroxynitriles. Suitable for AQA A level Chemistry.
By the end of this lesson KS5 students should be able to:
To know how to name hydroxynitriles
To understand the steps of the nucleophilic addition reaction mechanism to form hydroxynitriles
To be able to explain how a racemic mixture of hydroxynitriles can be produced
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks (all with answers included) on Optical Isomerism. Suitable for AQA A level Chemistry.
By the end of this lesson KS5 students should be able to:
To know which types of molecules show optical isomerism
To be able to represent enantiomers as 3D molecules showing the chiral centres
To understand why racemic mixtures are optically inactive
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A practical lesson on the theory on precipitation and ligand substitution reactions of transition metals.
By the end of the practical lesson students should be able to:
LO1: To make observations of the reactions of Cu2+, Fe2+, Fe3+, Mn2+ and Cr3+ in aqueous sodium hydroxide and ammonia
LO2: To construct ionic equations for the redox reactions that take place
**
This lesson should be completed after students have made flashcard/notes on the theory lesson so that they are able to answer the practical questions (see ‘Precipitation and Ligand Substitution Reactions’ in my TES Shop for this lesson) **
Students are encouraged to continue to use their flashcards following this lesson to improve their recall on this topic
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A complete lesson including starter activity, AfL work tasks and main work tasks on the reactivity series and metal extraction. Suitable for AQA GCSE Chemistry and Combined Science (higher and foundation)
By the end of this lesson KS4 students should be able to:
Deduce an order of reactivity of metals based on experimental results
Explain reduction and oxidation by loss or gain of oxygen
Explain how the reactivity is related to the tendency of the metal to form its positive ion
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
All tasks have worked out answers, which will allow students to self assess their work during the lesson
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons, including using your own lesson PowerPoints, is a fundamental skill of a qualified/unqualified teacher that will be assessed during the scenarios outlined above
A structured KS5 lesson including starter activity, AfL work tasks and practice questions with answers on Gibbs Free Energy (Part 2)
By the end of this lesson KS5 students should be able:
To state and use the relationship ΔG = ΔH-TΔS
To draw a link between ΔG and feasibility
To explain the limitations of predictions made by ΔG about feasibility, in terms of kinetics.
The teacher will be able to check students have met these learning objectives through mini AfL tasks for students to complete
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above
A structured Year 12 KS5 lesson including starter activity and AfL work tasks on The Boltzmann Distribution. Suitable for OCR Specification (AS Chemistry)
By the end of this lesson KS5 students should be able to:
**1. To draw a labelled diagram of the Boltzmann distribution
**2. To explain qualitatively the Boltzmann distribution and its relationship with activation energy
**3. To explain how temperature changes and catalytic behaviour effect the proportion of molecules exceeding the activation energy and hence the reaction rate using Boltzmann distributions
Declaimer: Please refrain from purchasing this popular resource for an interview lesson or a formal observation. This is because planning your own lessons including using your own lesson PowerPoints is a fundamental skill of a qualified/unqualified teacher that will be reviewed during these scenarios outlined above