I'm a secondary school maths teacher with a passion for creating high quality resources. All of my complete lesson resources come as single powerpoint files, so everything you need is in one place. Slides have a clean, unfussy layout and I'm not big on plastering learning objectives or acronyms everywhere. My aim is to incorporate interesting, purposeful activities that really make pupils think.
I have a website coming soon!
I'm a secondary school maths teacher with a passion for creating high quality resources. All of my complete lesson resources come as single powerpoint files, so everything you need is in one place. Slides have a clean, unfussy layout and I'm not big on plastering learning objectives or acronyms everywhere. My aim is to incorporate interesting, purposeful activities that really make pupils think.
I have a website coming soon!
Maze consists of squares containing questions (on addition, subtraction, multiplication and division of fractions) with answers, some of which are wrong. Pupils are only allowed to pass through squares containing correct answers. Extension - pupils design their own maze (I like to discuss how they can make their maze harder by including classic misconceptions). Extra worksheet included to help pupils think about misconceptions (warning - this may well confuse weaker pupils!)
Inspired by the Transformers cartoon/film/toys, pupils turn robots into vehicles using a mixture of shape transformations (translations, reflections, rotations and enlargements). Animated answers included. Great homework potential for pupils to design their own!
Worksheet where answers to questions are used to obtain a 3-digit code (which I set as the combination to a lockable money box containing a prize). Questions on a mixture of all the GCSE-standard percentage skills.
Adding, subtracting, multiplying and dividing fractions is a good topic, so what better than a joke to reward pupils' efforts? Pupils answer questions and use the code to reveal a funny gag.
A complete lesson on the theorem that angles in the same segment are equal. I always teach the theorem that the angle at the centre is twice the angle at the circumference first (see my other resources for a lesson on that theorem), as it can be used to easily prove the same segment theorem.
Activities included:
Starter:
Some basic questions on the theorems that the angle at the centre is twice the angle at the circumference, and that the angle in a semi-circle is 90 degrees, to check pupils remember them.
Main:
Slides to show what a chord, major segment and minor segment are, and to show what it means to say that two angles are in the same segment. This is followed up by instructions for pupils to construct the usual diagram for this theorem, to further consolidate their understanding of the terminology and get them to investigate what happens to the angle.
A ‘no words’ proof of the theorem, using the theorem that the angle at the centre is twice the angle at the circumference.
Missing angle examples of the theorem, that could be used as questions for pupils to try. These include more interesting variations that incorporate other angle rules.
A set of similar questions with a progression in difficulty, for pupils to consolidate.
Two extension questions.
Plenary:
A final set of six diagrams, where pupils have to decide if two angles match, either because of the theorem learnt in the lesson or because of another angle rule.
Printable worksheets and answers included.
Please do review if you buy as any feedback is greatly appreciated!
A complete lesson on the theorem that opposite angles in a cyclic quadrilateral sum to 180 degrees. Assumes that pupils have already met the theorems that the angle at the centre is twice the angle at the circumference, the angle in a semicircle is 90, and angles in the same segment are equal. See my other resources for lessons on these theorems.
Activities included:
Starter:
Some basics recap questions on the theorems already covered.
Main:
An animation to define a cyclic quadrilateral, followed by a quick question for pupils, where they decide whether or not diagrams contain cyclic quadrilaterals.
An example where the angle at the centre theorem is used to find an opposite angle in a cyclic quadrilateral, followed by a set of three similar questions for pupils to do. They are then guided to observe that the opposite angles sum to 180 degrees.
A quick proof using a very similar method to the one pupils have just used.
A set of 8 examples that could be used as questions for pupils to try and discuss. These have a progression in difficulty, with the later ones incorporating other angle rules. I’ve also thrown in a few non-examples.
A worksheet of similar questions for pupils to consolidate, followed by a second worksheet with a slightly different style of question, where pupils work out if given quadrilaterals are cyclic.
A related extension task, where pupils try to decide if certain shapes are always, sometimes or never cyclic.
Plenary:
A slide showing all four theorems so far, and a chance for pupils to reflect on these and see how the angle at the centre theorem can be used to prove all of the rest.
Printable worksheets and answers included.
Please review if you buy as any feedback is appreciated!
A complete lesson for first teaching about corresponding, alternate and supplementary angles.
Activities included:
Starter:
Pupils measure and label angles and hopefully make observations and conjectures about the rules to come.
Main:
Slides to introduce definitions, followed by a quiz on identifying corresponding, alternate and supplementary angles, that could be used as a multiple choice mini-whiteboard activity or printed as a card sort.
Another diagnostic question with a twist, to check pupils have grasped the definitions.
Examples followed by a standard set of basic questions, where pupils find the size of angles.
Examples/discussion questions on spotting less obvious corresponding, alternate and supplementary angles (eg supplementary angles in a trapezium).
A slightly tougher set of questions on this theme, followed by a nice angle chase puzzle and a set of extension questions.
Plenary:
Prompt for pupils to see how alternate angles can be used to prove that the angles in a triangle sum to 180 degrees.
Printable answers and worksheets included.
Please review if you buy as any feedback is appreciated!
A complete lesson on finding percentages of an amount using non-calculator methods, by relating them to the key percentages of 10%, 25% and 1%. See the cover image to get an idea of the intention of the lesson.
Activities included:
Starter:
A set of questions to recap on finding 50%, 25%, 75%, 10%, 5%, 20% and 1% of an amount.
Main:
Some slides to introduce the idea of using the key percentages to find other percentages.
A worksheet to consolidate these ideas, followed by three flowcharts in the style of the cover image, where pupils are given a starting number and work out all the percentages. The starting numbers get progressively more difficult. I use this as a non-calculator task, but it could be used with calculators too.
An extension task where pupils work out some percentages not included in the flowcharts, by combining percentages.
Plenary:
A great discussion question, looking at four possible ways to calculate 75% of a number.
Printable worksheets and answers included.
Please review if you buy as any feedback is appreciated!
A fun 'investigation&' using ratio and problem solving skills. Slightly dark theme of thieves sharing the profits of different robberies. Made by another TES user &';taylorda01' (thanks for the resource!) but I wanted to add answers to it.
A selection of puzzles, most using the digits 1 to 9 and an element of working systematically to obtain a solution. A few are from the the excellent Nrich website. Based around key skills of adding, subtracting, multiplying and dividing but that doesn't mean they're easy!
Starts with the basic tests for numbers up to 10, then looks at tests for higher numbers and finally problem solving using divisibility tests. Also looks at proofs of some of the tests using algebra. Worksheets at end for printing.
A short investigation based on a lovely puzzle I saw a while ago. Requires only knowledge of square numbers to investigate and enjoy, but pupils will need to be able to expand double brackets to understand a proof of the puzzle. Could be used with any age!
A complete lesson designed to be used to consolidate pupils’ ability to add and subtract a negative number.
Activities included:
Starter:
Some straight forward questions to test if they can remember the basic methods and help identify misconceptions.
Main:
A set of differentiated questions to give pupils a bit more practice.
A game adapted from the nrich website.
A closer look at the design of the game, with pupils making a sample space diagram.
Plenary:
Some final questions to prompt discussion and reflection on how to remember the rules used.
Printable worksheets and answers included.
Please review if you use this!
Maze consists of squares containing questions with answers, some of which are wrong. Pupils are only allowed to pass through squares containing correct answers. Extension - pupils design their own maze. I like to discuss how to make the maze harder by including classic misconceptions like divide by 5 to get 5%
Inspired by the TV show, pupils work in teams on a mix of Physical, Skill and Mystery maths puzzles . Game is divided into four zones based loosely on contributions of Greek, Egyptian, Indian and Chinese mathematicians in history. Teams collect crystals that buy a head-start in a final mega-puzzle - a really tough maze.Worksheets for printing at end of presentation which is clickable between menus.
A powerpoint with worksheets on the profit parabola model. A nice rich task to use with high-ability GCSE students, to deepen their understanding of quadratic functions/maximum points and also to see a real-life application of maths.
A treasure hunt requiring knowledge of interior and exterior angles. Two sets of questions to dissuade pupils from just following each other! Mistakes on first version now fixed.
Classic quiz with questions on area, including parallelograms, triangles, trapezia and composite shapes made with rectangles. Answers on each slide by clicking on orange squares plus on last slide. Hope no-one minds my use of an image of Bob Holness - he will always be the face of Blockbusters to me!
One significant figure estimation is a boring topic, so what better than a rubbish joke to go with it? Pupils answer questions and use the code to reveal a feeble gag. Mistakes on first version now corrected.