Hero image

Mick Doyle's Resource Shop

Average Rating4.08
(based on 77 reviews)

Over the last five years I have found the best way to stimulate learning is through engaging lessons. Lessons which apply scientific content to unusual, topical or popular scenarios. I currently have a range of premium and free resources to look through. I will continue to upload these resources as and when I can. Feel free to review, tweet or contact me regarding these resources or for ideas on current topics you are struggling to make engaging.

156Uploads

93k+Views

86k+Downloads

Over the last five years I have found the best way to stimulate learning is through engaging lessons. Lessons which apply scientific content to unusual, topical or popular scenarios. I currently have a range of premium and free resources to look through. I will continue to upload these resources as and when I can. Feel free to review, tweet or contact me regarding these resources or for ideas on current topics you are struggling to make engaging.
Neutralisation: Acid Spill!
mick_wmick_w

Neutralisation: Acid Spill!

(0)
After a devastating (fictional) acid spill students are introduced to the clean-up crew. Students use their knowledge of acids and alkalis to explain what method of clean-up would be most appropriate and investigate why a white solid seems to appear after the clean-up. Students use a simple experiment to prove the products of an acid-base reaction.
Earth's Structure: Can We Ever Go to the Centre of the Earth?
mick_wmick_w

Earth's Structure: Can We Ever Go to the Centre of the Earth?

(0)
Well the answer is no... Students watch a small clip from the 2008 movie Journey to the Centre of the Earth. Students discuss what parts of the clip they believe to be true and false. Students are introduced to the structure of the Earth as we know it to be today and are asked to write a creative story describing a scientifically correct journey to the centre of the Earth using the level ladder.
Echoes: Does a Duck's Quack Echo?
mick_wmick_w

Echoes: Does a Duck's Quack Echo?

(0)
Students challenge preconceptions by investigating the unusual question. Students develop a definition of an echo and use this knowledge to test how fast sound travels outside in the courtyard. Along with a series of sound clips, students use the evidence they have gathered to write a levelled question.
Rock Cycle: Where has the Sphinixs nose gone?
mick_wmick_w

Rock Cycle: Where has the Sphinixs nose gone?

(0)
Student creatively theorise possible reasons to explain the Sphinix's damaged nose. After which students are introduced to weathering and erosion. Using this knowledge, as well as content from the rock types lessons, students can model James Hutton's rock cycle using a simple class practical experiment. Students observe, crush, heat and melt sugar cubes to represent different parts of the rock cycle.
Compounds: Coming together
mick_wmick_w

Compounds: Coming together

(0)
Students are introduced to the difference between atoms and compounds through a comparison of a range of substances that include high levels of potassium. Student use this comparison to develop a definition for compounds. Students use their new knowledge to complete four mini- practical investigations to consolidate their learning.
Igneous Rock Formation: Can you make a new Island?
mick_wmick_w

Igneous Rock Formation: Can you make a new Island?

(0)
Students are reminded of the features of igneous rock from last lesson. Students develop theories to explain why some igneous rock have larger crystals then other samples. Students test this theory with a simple experiment using Salol as a model for igneous rock cooling. Students complete a GCSE style mark question related to the formation of igneous rocks.
Comparing elements: How unique are the elements?
mick_wmick_w

Comparing elements: How unique are the elements?

(0)
Can your students become element inspectors? After recapping the definition of an element from last lesson and independently completing the "spot the link" starter activity, students are introduced to the uniqueness and quirkiness of some of the elements from the periodic table. Students become elements inspectors by reading through the information packs in groups of four to become experts in one element: Nitrogen, chlorine, copper, arsenic, mercury and carbon. Students use their new found expertise to complete a row in a table. Students are reorganised into new groups containing an expert for each element. Students share their information to allow each students to complete their table. Students are introduced to proton number and atomic mass before completing a differentiated graph regarding the trends across a group. Students can evaluate or complete for homework.
Social influence Scheme of Work (AQA-A Psychology New Spec)
mick_wmick_w

Social influence Scheme of Work (AQA-A Psychology New Spec)

(0)
A whole AS/Year 1 AQA A Scheme of Work related to Topic 1: social Influence. PowerPoints, Class tasks, Work sheets and end of topic test is included. The SOW is based around the AS/1 Complete companion Cardwell & Flanagan, L1: What is Conformity: Students re-enact Asch's famous study with an unknowing student from another class.. L2: Evaluation of Asch's study L3: Explaining conformity: Students complete a group cheat sheet on 1 of 4 different explanations of conformity and share. Emphasis of the duel processing model is made. L4: Stanford Prison experiment: students use articles and real footage to introduce the role of social roles. L5: Obedience: Independent work and real footage is used to gain insight into the procedure and findings of Milgram's study. L6: Essay: Students are introduced to writing extended essays using PEEL. Students re-assemble an essay that unfortunately been cut up into pieces... L7: variations of Milgram's study: Students are introduced to the effects of other situational factors and evaluate. L8: Explanations of Obedience: Agentic state and Legitimate Authority L9: Authoritarian Personality: Students complete the F-scale and are introduced to dispositional factors of obedience. L10: Resisting social influence L11: Locus of control L12 and 13: Students watch a copy of 12 angry men to illustrate concepts so far and introduce minority influence L14: Students complete a end of topic test. Model answers for self reflection are provided.
C3 topic 1: Water testing and Ion testing
mick_wmick_w

C3 topic 1: Water testing and Ion testing

(0)
Three lessons are included which run through: Lesson 1 water testing: A reminder of Flame tests, and the introduction of cation precipitate tests. -Students complete a six mark question and summary table to remind themselves of C2 ion tests. -Students complete simple qualitative sodium hydroxide precipitate test with a number of metal cations in solution. Lesson 2 Qalitative test revision book: A reminder of anions. -Teacher could demo experiments from lesson 3 or explain using the PowerPoint slide -Students complete a booklet to summarise all tests learnt. Lesson 3: Students complete a circus of all experiments -test for halogens -test for sulfates -test for carbonate -flame test for cations -precipitate test for cations -Using these tests students solve a fictional (a ridiculous) murder.
KS3 Acids and Alkalis SOW
mick_wmick_w

KS3 Acids and Alkalis SOW

9 Resources
KS3 scheme of work containing ten lessons equipped with lesson plans, PowerPoints, resources and tech notes. Lesson 1- How dangerous are acids? Lesson 2- Useful alkalis (indigestion experiment) Lesson 3- Indicators (testing different substances) Lesson 4- Natural indicators (red cabbage indicator) Lesson 5- Neutralisation (Forming a salt experiment) Lesson 6- Evaluating indicators (assessment) Lesson 7- Testing acid rain (using pH probes) Lesson 8- Using pH to solve a crime (soil sampling) Lesson 9- Higher: Acid bath murderer (concentration)
Metals: Are all metals the same?
mick_wmick_w

Metals: Are all metals the same?

(0)
Student are introduced with a series of keywords that describe general properties of metals and non-metals which they organise into a Venn diagram to demonstrate their understanding. Students challenge these general properties by completing a table that highlights the unique properties of six different metals. Students use extracted information from the swapping posters to complete their table.
How Much Oxygen is in our Modern Day Atmosphere?
mick_wmick_w

How Much Oxygen is in our Modern Day Atmosphere?

(0)
Edexcel Core Chemistry Chemistry in our Modern World Topic 1 Lesson 3 and 4 Students use their scientific skills to plan, implement and evaluate a simple experiment that proves the composition of oxygen in the modern day atmosphere. The first hour is spent planning a procedure, discussing methods to control certain variables and to design a table to collect data that is in concordance to the edexcel controlled assessment. The second hour is used to collect the data and to form a conclusion. This conclusion is then compared to a pie chart to see how accurate the experiment was.
state of Matter: Solids, Liquids and Gases
mick_wmick_w

state of Matter: Solids, Liquids and Gases

(0)
Students are introduced to Democritus and his ideas of divisibility. Building on KS2 knowledge, students use plasticine to build models of solids, liquids and gases in groups. Using the idea that syringes of water and sand cannot be compressed, students rework their models to demonstrate the density of liquids. Teacher uses a simple demonstration of: floating and sinking, compression and shape to reinforce the idea of the "particle model". Students complete their findings independently.
Metal reactivity: Where do metals come from? (KS3)
mick_wmick_w

Metal reactivity: Where do metals come from? (KS3)

(0)
Students are introduced to metal ores and a brief explanation of how their extraction differs due to reactivity. Students watch a teacher demonstration of each of the metals in reactivity with water, hydrochloric acid or heated hydrochloric acid. As a class students rank their reactivity and note any observations. Students continue the lesson by testing the gases produced when a metal is added to a acid. Students complete they squeaky pop test to discover it is hydrogen.
Science Club Activity: Rocket Science
mick_wmick_w

Science Club Activity: Rocket Science

(0)
These activities should last for three weeks and is designed for Year 7 and 8. sessions 1 introduces the very spectacular Methane oxygen rocker. Risk assessment and instructions are given. Session 2: Acid base rockets using vinegar and baking powder Session 3: Students use their acid base rockets to investigate how the amount of fuel, type of acid and concentration effect rocket height. After each session I make a video on the free replay app and add it to our school twitter page. they should give you a good idea of the activities. https://quik.gopro.com/v/oxR1vLo0Dz/ https://quik.gopro.com/v/om1c0F5cxN/ I use these sessions at the beginning of the year as students enjoy them a lot. I'll continue adding resources for the rest of the activities present on the SOW.
Eating Behaviour: Writing 16 mark essays (Psychology AQA A)
mick_wmick_w

Eating Behaviour: Writing 16 mark essays (Psychology AQA A)

(0)
Psychology AQA A -Students are introduced to the levelled mark scheme. -discuss command words to questions and sort an essay card sort into points, evidence and evaluation. Students reassemble the cards into an essay (Outline and evaluate the role of learning for food preference). Higher students will realise the flexibility they have in forming paragraphs. -Students are given an example section from "Discuss the evolutionary theory to food preference" and are then asked to finish the evaluative points. -Students peer mark using levelled mark scheme. Homework: Students use all the rules to write "Outline and evaluate the role of neural and hormonal mechanisms in eating behaviour.
Diffusion: Silent but Deadly
mick_wmick_w

Diffusion: Silent but Deadly

(0)
Students consider the factors which can increase the unpleasant experience of flatulence... Using the starter and a demonstration of perfume students learn the idea that the random movement of particles can lead to the spreading of substances. Students move into small groups and decide on how they can role play the scientific concept to the class. After students watch each other's sixty second role plays they evaluate them and complete a levelled worksheet. Students are
HIV Market place activity
mick_wmick_w

HIV Market place activity

(0)
Students are introduced to the shocking symptoms of AIDs and are briefly introduced to the HIV virus. Students are introduced to the concept of a market place activity in which students will design resources, promote and explain what they have done and learn from each other to allow them to complete a set of questions. Students focus on: -Symptoms -Transmission -Managment I designed this lesson to accompany my micro-organism unit and dispel the use of my students using the word "AIDs" lightly. They had a lot of questions after the lesson and seemed to enjoy it.
Isotopes: Did Ancient Egyptians Smoke cannabis?
mick_wmick_w

Isotopes: Did Ancient Egyptians Smoke cannabis?

(0)
Lesson 3 of the edexcel new spec for chemistry Students are introduced to an usual hook into the lesson whereas the remains of Ramasis II stomach was found to contain trace compounds of Cannabis. was this because ancient Egyptians smoke cannabis or was it contamination? Students draw the structure of a carbon atom before discussing the definition of isotope and C-14. discussing carbon dating is optional to answer the starter whereby the cannabis and remains both contain the same amount of C-14. Students complete questions related to relativity and isotopes using the Edexcel Chemistry textbook