Over the last five years I have found the best way to stimulate learning is through engaging lessons. Lessons which apply scientific content to unusual, topical or popular scenarios.
I currently have a range of premium and free resources to look through. I will continue to upload these resources as and when I can.
Feel free to review, tweet or contact me regarding these resources or for ideas on current topics you are struggling to make engaging.
Over the last five years I have found the best way to stimulate learning is through engaging lessons. Lessons which apply scientific content to unusual, topical or popular scenarios.
I currently have a range of premium and free resources to look through. I will continue to upload these resources as and when I can.
Feel free to review, tweet or contact me regarding these resources or for ideas on current topics you are struggling to make engaging.
Students are introduced to metal ores and a brief explanation of how their extraction differs due to reactivity.
Students watch a teacher demonstration of each of the metals in reactivity with water, hydrochloric acid or heated hydrochloric acid. As a class students rank their reactivity and note any observations.
Students continue the lesson by testing the gases produced when a metal is added to a acid. Students complete they squeaky pop test to discover it is hydrogen.
Students are introduced to a Chief fireman who is struggling to put out a burning building. Students discuss their ideas while they watch the video and share their ideas to the class.
Students are introduced to the fire triangle and the word equation for combustion.
Students complete a practical in which they build three types of fire extinguishers (sand, water and carbon dioxide foam) to put out a controlled fire made from splints. Students decide on which extinguisher is the most effective and how it relates to the fire triangle.
Students finish the lesson through the introduction of a chip pan fire to demonstrate how certain fires have specific requirements to extinguish them safely.
Students read through the accounts of two cartoon characters to introduce the idea regarding the difference between science and opinion.
Students are then introduced to a scenario involving the head teacher receiving the disturbing news that one of the teachers at school are in fact an alien! Students read through the letter he received and decide on whether this accusation is based on science or opinion.
Students learn about chromatography as separation test. Students use a simple modification of the experiment to separate "blood samples" of each of the suspected teachers. The Alien teacher's blood sample will also contain green and blue food colouring.
Students complete a wanted poster explaining their findings.
This resource pack includes EAL differentiated worksheets, detailed lesson plans, and worksheets.
Students consider the factors which can increase the unpleasant experience of flatulence...
Using the starter and a demonstration of perfume students learn the idea that the random movement of particles can lead to the spreading of substances.
Students move into small groups and decide on how they can role play the scientific concept to the class. After students watch each other's sixty second role plays they evaluate them and complete a levelled worksheet.
Students are
Student creatively theorise possible reasons to explain the Sphinix's damaged nose. After which students are introduced to weathering and erosion. Using this knowledge, as well as content from the rock types lessons, students can model James Hutton's rock cycle using a simple class practical experiment.
Students observe, crush, heat and melt sugar cubes to represent different parts of the rock cycle.
Students assist Doctor Gregory House M.D in diagnosing a patient of an unknown illness. Students use the diagnosis cards to discuss which disease or disorder the patient is suffering from.
Students discover that the patient must be poisoned with arsenic, Oooo-eeer! Students learn about Simple Distillation equipment through a poster relay task. After the teacher discusses the explanation of removing soluble solutes the students complete a worksheet demonstrating their understanding.
Students are introduced to the "horrific", yet incredibly improbable event of three lorries each containing sand, iron fillings and salt colliding. Their loads have been perfectly mixed and need separating...
Students will work in groups to decide on how they might use their allocated equipment to separate these substances. Using content from the "ocean-clean up lesson", and "sieving for gold" lesson students will extract the iron fillings with magnets, use filtration to remove the sand filtrate and evaporation to remove the salt from the water.
Students are asked to think about all of the chemicals and substances inside the oceans of the Earth. After probably getting a few answers like "fish" students should move onto ideas such as salt, sand, and pollutants.
Students recap the idea of filtration to remove insoluble "garbage islands" from the sea and are then introduced to the idea of evaporation to remove the salt. The use of producing fresh water from brine as well as salt is discussed.
After completing a class risk assessment, students complete a practical experiment. Evaporating salt from "seawater" in an evaporating dish.
Students write their conclusion and then improve using expert language.
Can your students become element inspectors?
After recapping the definition of an element from last lesson and independently completing the "spot the link" starter activity, students are introduced to the uniqueness and quirkiness of some of the elements from the periodic table.
Students become elements inspectors by reading through the information packs in groups of four to become experts in one element: Nitrogen, chlorine, copper, arsenic, mercury and carbon.
Students use their new found expertise to complete a row in a table. Students are reorganised into new groups containing an expert for each element. Students share their information to allow each students to complete their table.
Students are introduced to proton number and atomic mass before completing a differentiated graph regarding the trends across a group. Students can evaluate or complete for homework.
The remaining teeth of Granny W are pretty darn sweet! Can students help her decide on how to make the sweest tea possible using their understanding of solubility from the Five S's treasure hunt lesson? (I hope they can).
After using a model of rice and peas to demonstrate solvents, solutes, solution and saturation students are introduced to the scenario.
Students are split into six groups and given information packs related to one of three experiments (two groups for each experiment).
Students will have an A3 poster style planning sheet to plan and complete an experiment to test whether:
-Water has a saturation point?
-Temperature of the solvent affects solubility of the solute?
-Surface area of the sugar affects solubility?
Students complete their posters and share their findings to the class.
If you were wondering they are: Solute, solvent, solution, saturation and Solubility...
Students start the lesson by thinking of as many scientific questions they ask about the picture that is on the board (a cup of tea). Students should be prompted to think of as many aspects of science they can apply to this quite simple picture... teacher could write answers on the board and praise legitimate ideas.
Use the starter to discuss the idea of the five S's. Student complete a table during a treasure hunt that includes definitions and examples.
Students discuss answers and watch video clip to reinforce their understanding. The teacher demonstrates saturation and conservation of mass by adding a spatula of sugar into a beaker of warm water on a weighing scales.
Students complete the worksheet in any order they like to demonstrate their ability.
After a brief introduction to the Gold rush of 1849 students are introduced to the new topic of separating techniques. One solubility and insolubility are introduced students sieve for gold using a mixture of coffee granules and gold glitter.
After completing the filtration experiments students draw a cartoon strip of their method and findings.
Students are introduced to Democritus and his ideas of divisibility. Building on KS2 knowledge, students use plasticine to build models of solids, liquids and gases in groups. Using the idea that syringes of water and sand cannot be compressed, students rework their models to demonstrate the density of liquids.
Teacher uses a simple demonstration of: floating and sinking, compression and shape to reinforce the idea of the "particle model".
Students complete their findings independently.
Russell the Wilderness Explorer wants to earn his expansion and contraction badge, can you help?
Students become adventure explorers and earn badges by defining key terms from earlier on in the unit.
Students watch classic demonstrations (could be completed as class experiments) and video clips from the movie to help them explain why particles expand when heated and contract during cooling. Higher students are introduced to the idea of density before answering and evaluating an assessed question.
I used this lesson very successfully in an Ofsted observation.
Students find this lesson incredibly engaging- I thought I'd share this resource for free due to the Disney copy right issues etc.
A full KS3 scheme of work that contains six fully resourced lessons to allow your department to complete a Science Fair project. As a school we conducted this period for a two week cycle after half term to allow students to; produce an idea, write a hypothesis, plan a method, conduct an experiment of their choice and make their project.
Class winners were chosen and then allowed to present their work in the hall for the rest of the school to see. This is the third year we have completed our science fair at my school. This year we had four entries that won prizes at the big bang fair regional competition. One of which was chosen as the Young scientist of the year regional winner and will be presenting their project nationally later next year.
This pack contains:
Assembly PowerPoint: To present to the whole school introducing the fair.
Lesson 1: Producing an idea
Lesson 2: Forming a Method
Lesson 3: Pilot experiment
Lesson 4: Experimental time
Lesson 5: Conclusion and evaluation (making project)
Lesson 6: Choosing a winner
Lesson plans, resources and example project winners also included.
I hope, if you are willing for a bit of chaos, that you see the same enthusiasm and creativity in your students as I have.
good luck!
Students use their understanding of mass and weight to test how high they can jump on different planets.
Using metre rulers, calculators and some enthusiasm students can multiply their average jump by the relative mass of each of the planets in the solar system.
This lesson was pitched to a low ability class that needed an active way to practice their mathematics skills.
Students use murder mystery sorting cards to piece together the events that lead to Robbie Malone's death.
Once students are introduced to carbon monoxide students use a series of videos and questions to discover it's effects.
Students challenge preconceptions by investigating the unusual question.
Students develop a definition of an echo and use this knowledge to test how fast sound travels outside in the courtyard.
Along with a series of sound clips, students use the evidence they have gathered to write a levelled question.
Students are introduced to the pain reliever 'Entonox' a gas made from molecules comprised of nitrogen and oxygen.
Students have ten minutes to build a moli-model and read an information sheet related to a compound of nitrogen and oxygen to see if it would be suitable for pain relief.
Once students have completed three models they come to a conclusion of which gas would be most suitable: nitrogen monoxide, dinitrogen monoxide or nitrogen dioxide.
Higher level students can be introduced to coefficients and subscripted numbers in relation to symbol formulae.
Edexcel Core Chemistry
Chemistry in our Modern World
Topic 1 Lesson 3 and 4
Students use their scientific skills to plan, implement and evaluate a simple experiment that proves the composition of oxygen in the modern day atmosphere.
The first hour is spent planning a procedure, discussing methods to control certain variables and to design a table to collect data that is in concordance to the edexcel controlled assessment.
The second hour is used to collect the data and to form a conclusion. This conclusion is then compared to a pie chart to see how accurate the experiment was.