Hero image

Mr Science

Average Rating4.30
(based on 93 reviews)

Head of science Check out my Youtube channel for free videos to support your teaching, https://www.youtube.com/mrscience88

156Uploads

164k+Views

49k+Downloads

Head of science Check out my Youtube channel for free videos to support your teaching, https://www.youtube.com/mrscience88
AQA GCSE Biology- Decomposition
mr_sciencemr_science

AQA GCSE Biology- Decomposition

(0)
Designed for the new specification AQA GCSE( covers spec point 4.7.2 ) course but can be modified for other exam boards. 18 slides covering Decomposition. By the end of the powerpoint students would have covered: 4.7.2.3 Decomposition (biology only)
AQA GCSE Biology- Osmosis
mr_sciencemr_science

AQA GCSE Biology- Osmosis

(1)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 16 slides covering Osmosis . By the end of the powerpoint students would have covered: Water may move across cell membranes via osmosis. Osmosis is the diffusion of water from a dilute solution to a concentrated solution through a partially permeable membrane. Students should be able to: use simple compound measures of rate of water uptake use percentages calculate percentage gain and loss of mass of plant tissue. Required practical activity 3: investigate the effect of a range of concentrations of salt or sugar solutions on the mass of plant tissue.
International A-level Biology Edexcel Topic 8: The Effect of Drugs on the Nervous System
mr_sciencemr_science

International A-level Biology Edexcel Topic 8: The Effect of Drugs on the Nervous System

(0)
Designed for the new specification International A-level edexcel course but can be modified for other exam boards. 24 slides coveringThe Structure of Neurones By the end of the powerpoint students would have covered: 8.7 understand how the effects of drugs can be caused by their influence on nerve impulse transmission, illustrated by nicotine, lidocaine and cobra venom alpha toxin, the use of L-DOPA in the treatment of Parkinson’s disease and the action of MDMA (ecstasy) Powerpoint contains exam questions.
International A-level Biology Edexcel Topic 1: Carbohydrates
mr_sciencemr_science

International A-level Biology Edexcel Topic 1: Carbohydrates

(0)
Designed for the new specification International A-level edexcel course but can be modified for other exam boards. 41 slides covering Carbohydrates By the end of the powerpoint students would have covered: -What is the difference between monosaccharides, disaccharides and polysaccharides. -Explain how disaccharides are formed. -Be able to relate the structures of monosaccharides, disaccharides and polysaccharides to their roles. -Use a semi-quantitative method with Benedict’s reagent to estimate the concentrations of reducing sugars and with iodine solution to estimate the concentrations of starch.
IGCSE Edexcel Biology (9-1) Feeding relationships
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Feeding relationships

(0)
Designed for the new specification IGCSE Edexcel course but can be used for other examination boards. Covers: (b) Feeding relationships 4.6  understand the names given to different trophic levels, including producers, primary, secondary and tertiary consumers and decomposers 4.7  understand the concepts of food chains, food webs, pyramids of number, pyramids of biomass and pyramids of energy transfer 4.8  understand the transfer of substances and energy along a food chain 4.9  understand why only about 10% of energy is transferred from one trophic level to the next
AQA GCSE Biology- Photosynthesis
mr_sciencemr_science

AQA GCSE Biology- Photosynthesis

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 29 slides covering Photosynthesis By the end of the powerpoint students would have covered: 4.4.1.1 Photosynthetic reaction Photosynthesis is represented by the equation: carbon dioxide + water light glucose + oxygen Students should recognise the chemical symbols: CO2, H2O, O2 and C6H12O6. Students should be able to describe photosynthesis as an endothermic reaction in which energy is transferred from the environment to the chloroplasts by light. 4.4.1.2 Rate of photosynthesis Students should be able to explain the effects of temperature, light intensity, carbon dioxide concentration, and the amount of chlorophyll on the rate of photosynthesis. Students should be able to: measure and calculate rates of photosynthesis extract and interpret graphs of photosynthesis rate involving one limiting factor plot and draw appropriate graphs selecting appropriate scale for axes translate information between graphical and numeric form. (HT only) These factors interact and any one of them may be the factor that limits photosynthesis. (HT only) Students should be able to explain graphs of photosynthesis rate involving two or three factors and decide which is the limiting factor. (HT only) Students should understand and use inverse proportion – the inverse square law and light intensity in the context of photosynthesis. (HT only) Limiting factors are important in the economics of enhancing the conditions in greenhouses to gain the maximum rate of photosynthesis while still maintaining profit. **Required practical activity 6: investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed. ** 4.4.1.3 Uses of glucose from photosynthesis The glucose produced in photosynthesis may be: used for respiration converted into insoluble starch for storage used to produce fat or oil for storage used to produce cellulose, which strengthens the cell wall used to produce amino acids for protein synthesis. To produce proteins, plants also use nitrate ions that are absorbed from the
AQA B10 The nervous system
mr_sciencemr_science

AQA B10 The nervous system

4 Resources
Contains 4 lessons covering: Homeostasis The human nervous system The brain The eye Lessons are designed for the new AQA course covering specification points: 4.5.1, 4.5.2.1,4.5.2.2,4.5.2.3 These lessons can be adapted to be used with other exam boards as all new science specifications now cover the same content.
AQA Organisation revision
mr_sciencemr_science

AQA Organisation revision

(0)
Designed to use as a revision tool to help students summarise content from Organisation. Alternatively can be given as a homework task. Resource contains 3 revision mats.
OCR A-level biology lipids
mr_sciencemr_science

OCR A-level biology lipids

(0)
A great simple resource to teach lipids, powerpoint contains exam questions and when I taught this lesson I used slides 6 and 12 for group activities. www.tes.com/teaching-resources/shop/mr_science
AQA GCSE Biology - Levels of organisation
mr_sciencemr_science

AQA GCSE Biology - Levels of organisation

(0)
Check out my other resources at: www.tes.com/teaching-resources/shop/mr_science Designed for the new specification AQA GCSE( covers spec point 4.7.2 ) course but can be modified for other exam boards. 27 slides covering Levels of organisation. By the end of the powerpoint students would have covered: 4.7.2.1 Levels of organisation
AQA Cell biology revision
mr_sciencemr_science

AQA Cell biology revision

(0)
Designed to use as a revision tool to help students summarise content from Cell biology. Alternatively can be given as a homework task. Contains 2 revision mats Print off in A3. www.tes.com/teaching-resources/shop/mr_science
Heart worksheet -Biology - IGCSE/GCSE (PDF)
mr_sciencemr_science

Heart worksheet -Biology - IGCSE/GCSE (PDF)

(0)
Pupils label the internal and external structure of the heart. There is also a word fill task at the bottom of the sheet. This worksheet can be used for pupils on the GCSE/IGCSE course.It can also be used to help A-level pupils review prior learning. Worksheet comes in PDF form.
IGCSE Edexcel Biology (9-1) Cloning
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Cloning

(0)
Designed for the new specification IGCSE Edexcel course but can be used for other examination boards. Covers: (d) Cloning 5.17B describe the process of micropropagation (tissue culture) in which explants are grown in vitro 5.18B understand how micropropagation can be used to produce commercial quantities of genetically identical plants with desirable characteristics 5.19B describe the stages in the production of cloned mammals involving the introduction of a diploid nucleus from a mature cell into an enucleated egg cell, illustrated by Dolly the sheep 5.20B understand how cloned transgenic animals can be used to produce human proteins
AQA GCSE Biology- Stem cells
mr_sciencemr_science

AQA GCSE Biology- Stem cells

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 20 slides covering Stem cells. By the end of the powerpoint students would have covered: A stem cell is an undifferentiated cell of an organism which is capable of giving rise to many more cells of the same type, and from which certain other cells can arise from differentiation. Students should be able to describe the function of stem cells in embryos, in adult animals and in the meristems in plants. Stem cells from human embryos can be cloned and made to differentiate into most different types of human cells. Stem cells from adult bone marrow can form many types of cells including blood cells. Meristem tissue in plants can differentiate into any type of plant cell, throughout the life of the plant. Knowledge and understanding of stem cell techniques are not required. Treatment with stem cells may be able to help conditions such as diabetes and paralysis. In therapeutic cloning an embryo is produced with the same genes as the patient. Stem cells from the embryo are not rejected by the patient’s body so they may be used for medical treatment. The use of stem cells has potential risks such as transfer of viral infection, and some people have ethical or religious objections. Stem cells from meristems in plants can be used to produce clones of plants quickly and economically. • Rare species can be cloned to protect from extinction. • Crop plants with special features such as disease resistance can be cloned to produce large numbers of identical plants for farmers.
AQA GCSE Biology - DNA
mr_sciencemr_science

AQA GCSE Biology - DNA

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 41 slides covering DNA: By the end of the powerpoint students would have covered: 4.6.1.4 DNA and the genome 4.6.1.5 DNA structure (biology only)
IGCSE Edexcel Biology (9-1) Inheritance *Updated*
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Inheritance *Updated*

(0)
Designed for the new specification IGCSE edexcel course but can be used for other examination boards. Covers: (b) Inheritance 3.14 understand that the genome is the entire DNA of an organism and that a gene is a section of a molecule of DNA that codes for a specific protein 3.15 understand that the nucleus of a cell contains chromosomes on which genes are located 3.16B describe a DNA molecule as two strands coiled to form a double helix, the strands being linked by a series of paired bases: adenine (A) with thymine (T), and cytosine © with guanine (G) 3.17B understand that an RNA molecule is single stranded and contains uracil (U) instead of thymine (T) 3.18B describe the stages of protein synthesis including transcription and translation, including the role of mRNA, ribosomes, tRNA, codons and anticodons 3.19 understand how genes exist in alternative forms called alleles which give rise to differences in inherited characteristics 3.20 understand the meaning of the terms: dominant, recessive, homozygous, heterozygous, phenotype, and genotype 3.21B understand the meaning of the term codominance 3.22 understand that most phenotypic features are the result of polygenic inheritance rather than single genes 3.23 describe patterns of monohybrid inheritance using a genetic diagram 3.24 understand how to interpret family pedigrees 3.25 predict probabilities of outcomes from monohybrid crosses 3.26 understand how the sex of a person is controlled by one pair of chromosomes, XX in a female and XY in a male 3.27 describe the determination of the sex of offspring at fertilisation, using a genetic diagram 3.28 understand how division of a diploid cell by mitosis produces two cells that contain identical sets of chromosomes 3.29 understand that mitosis occurs during growth, repair, cloning and asexual reproduction 3.30 understand how division of a cell by meiosis produces four cells, each with half the number of chromosomes, and that this results in the formation of genetically different haploid gametes 3.31 understand how random fertilisation produces genetic variation of offspring 3.32 know that in human cells the diploid number of chromosomes is 46 and the haploid number is 23 3.33 understand that variation within a species can be genetic, environmental, or a combination of both 3.34 understand that mutation is a rare, random change in genetic material that can be inherited 3.35B understand how a change in DNA can affect the phenotype by altering the sequence of amino acids in a protein 3.36B understand how most genetic mutations have no effect on the phenotype, some have a small effect and rarely do they have a significant effect 3.38 explain Darwin’s theory of evolution by natural selection 3.39 understand how resistance to antibiotics can increase in bacterial populations, and appreciate how such an increase can lead to infections being difficult to control
IGCSE Edexcel Biology (9-1) The organism in the environment
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) The organism in the environment

(0)
Designed for the new specification IGCSE Edexcel course but can be used for other examination boards. Covers: The organism in the environment 4.1 understand the terms population, community, habitat and ecosystem 4.2 practical: investigate the population size of an organism in two different areas using quadrats 4.3B understand the term biodiversity 4.4B practical: investigate the distribution of organisms in their habitats and measure biodiversity using quadrats 4.5 understand how abiotic and biotic factors affect the population size and distribution of organisms