Hero image

Mr Science

Average Rating4.30
(based on 93 reviews)

Head of science Check out my Youtube channel for free videos to support your teaching, https://www.youtube.com/mrscience88

153Uploads

159k+Views

49k+Downloads

Head of science Check out my Youtube channel for free videos to support your teaching, https://www.youtube.com/mrscience88
IGCSE Edexcel Biology (9-1) Diffusion, Osmosis and Active transport *UPDATED*
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Diffusion, Osmosis and Active transport *UPDATED*

(0)
Designed for the new specification IGCSE Edexcel course but can be used for other examination boards. Covers: (d) Movement of substances into and out of cells 2.15 understand the processes of diffusion, osmosis and active transport by which substances move into and out of cells 2.16 understand how factors affect the rate of movement of substances into and out of cells, including the effects of surface area to volume ratio, distance, temperature and concentration gradient 2.17 practical: investigate diffusion and osmosis using living and non-living systems
IGCSE Edexcel Biology (9-1) Human Digestion *UPDATED*
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Human Digestion *UPDATED*

(0)
Designed for the new specification IGCSE Edexcel course but can be used for other examination boards. Covers: (e) Nutrition Humans 2.24 understand that a balanced diet should include appropriate proportions of carbohydrate, protein, lipid, vitamins, minerals, water and dietary fibre 2.25 identify the sources and describe the functions of carbohydrate, protein, lipid (fats and oils), vitamins A, C and D, the mineral ions calcium and iron, water and dietary fibre as components of the diet 2.26 understand how energy requirements vary with activity levels, age and pregnancy 2.27 describe the structure and function of the human alimentary canal, including the mouth, oesophagus, stomach, small intestine (duodenum and ileum), large intestine (colon and rectum) and pancreas 2.28 understand how food is moved through the gut by peristalsis 2.29 understand the role of digestive enzymes, including the digestion of starch to glucose by amylase and maltase, the digestion of proteins to amino acids by proteases and the digestion of lipids to fatty acids and glycerol by lipases 2.30 understand that bile is produced by the liver and stored in the gall bladder 2.31 understand the role of bile in neutralising stomach acid and emulsifying lipids 2.32 understand how the small intestine is adapted for absorption, including the structure of a villus 2.33B practical: investigate the energy content in a food sample Contains exam questions.
IGCSE Edexcel Biology (9-1) Biological molecules *UPDATED*
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Biological molecules *UPDATED*

(1)
Designed for the new specification IGCSE edexcel course but can be used for other examination boards. Covers: ( c ) Biological molecules 2.7 identify the chemical elements present in carbohydrates, proteins and lipids (fats and oils) 2.8 describe the structure of carbohydrates, proteins and lipids as large molecules made up from smaller basic units: starch and glycogen from simple sugars, protein from amino acids, and lipid from fatty acids and glycerol 2.9 practical: investigate food samples for the presence of glucose, starch, protein and fat 2.10 understand the role of enzymes as biological catalysts in metabolic reactions 2.11 understand how temperature changes can affect enzyme function, including changes to the shape of active site 2.12 practical: investigate how enzyme activity can be affected by changes in temperature 2.13 understand how enzyme function can be affected by changes in pH altering the active site  2.14B practical: investigate how enzyme activity can be affected by changes in pH Contains exam style questions
IGCSE Edexcel Biology (9-1) Genetic modification (genetic engineering)
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Genetic modification (genetic engineering)

(0)
Designed for the new specification IGCSE Edexcel course but can be used for other examination boards. Covers: © Genetic modification (genetic engineering) 5.12  understand how restriction enzymes are used to cut DNA at specific sites and ligase enzymes are used to join pieces of DNA together 5.13  understand how plasmids and viruses can act as vectors, which take up pieces of DNA, and then insert this recombinant DNA into other cells 5.14  understand how large amounts of human insulin can be manufactured from genetically modified bacteria that are grown in a fermenter 5.15  understand how genetically modified plants can be used to improve food production 5.16  understand that the term transgenic means the transfer of genetic material from one species to a different species
AQA GCSE Biology- Trophic levels in an ecosystem
mr_sciencemr_science

AQA GCSE Biology- Trophic levels in an ecosystem

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 16 slides covering trophic levels in a ecosystem. By the end of the powerpoint students would have covered: 4.7.4.1 Trophic levels 4.7.4.2 Pyramids of biomass 4.7.4.3 Transfer of biomass
IGCSE Edexcel Biology (9-1) Carbon cycle & Nitrogen cycle
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) Carbon cycle & Nitrogen cycle

(0)
Designed for the new specification IGCSE Edexcel course but can be used for other examination boards. Covers: © Cycles within ecosystems 4.10 describe the stages in the carbon cycle, including respiration, photosynthesis, decomposition and combustion 4.11B describe the stages in the nitrogen cycle, including the roles of nitrogen fixing bacteria, decomposers, nitrifying bacteria and denitrifying bacteria (specific names of bacteria are not required)
AQA GCSE Biology- Cell specialisation and cell differentiation
mr_sciencemr_science

AQA GCSE Biology- Cell specialisation and cell differentiation

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 32 slides covering Cell structure (cell specialisation and cell differentiation). By the end of the powerpoint students would have covered: **4.1.1.3 Cell specialisation ** Students should be able to, when provided with appropriate information, explain how the structure of different types of cell relate to their function in a tissue, an organ or organ system, or the whole organism. Cells may be specialised to carry out a particular function: sperm cells, nerve cells and muscle cells in animals root hair cells, xylem and phloem cells in plants. **4.1.1.4 Cell differentiation ** Students should be able to explain the importance of cell differentiation. As an organism develops, cells differentiate to form different types of cells. Most types of animal cell differentiate at an early stage. Many types of plant cells retain the ability to differentiate throughout life. In mature animals, cell division is mainly restricted to repair and replacement. As a cell differentiates it acquires different sub-cellular structures to enable it to carry out a certain function. It has become a specialised cell.
AQA GCSE Biology- Diffusion
mr_sciencemr_science

AQA GCSE Biology- Diffusion

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 32 slides covering Diffusion. (contains a optional practical) By the end of the powerpoint students would have covered: Substances may move into and out of cells across the cell membranes via diffusion. Diffusion is the spreading out of the particles of any substance in solution, or particles of a gas, resulting in a net movement from an area of higher concentration to an area of lower concentration. Some of the substances transported in and out of cells by diffusion are oxygen and carbon dioxide in gas exchange, and of the waste product urea from cells into the blood plasma for excretion in the kidney. Students should be able to explain how different factors affect the rate of diffusion. Factors which affect the rate of diffusion are: the difference in concentrations (concentration gradient) the temperature the surface area of the membrane. A single-celled organism has a relatively large surface area to volume ratio. This allows sufficient transport of molecules into and out of the cell to meet the needs of the organism. Students should be able to calculate and compare surface area to volume ratios. Students should be able to explain the need for exchange surfaces and a transport system in multicellular organisms in terms of surface area to volume ratio. Students should be able to explain how the small intestine and lungs in mammals, gills in fish, and the roots and leaves in plants, are adapted for exchanging materials. In multicellular organisms, surfaces and organ systems are specialised for exchanging materials. This is to allow sufficient molecules to be transported into and out of cells for the organism’s needs. The effectiveness of an exchange surface is increased by: having a large surface area a membrane that is thin, to provide a short diffusion path (in animals) having an efficient blood supply (in animals, for gaseous exchange) being ventilated.
AQA GCSE Biology- Animal and plant cells
mr_sciencemr_science

AQA GCSE Biology- Animal and plant cells

(0)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 15 slides covering animal and plant cells. By the end of the powerpoint students would have covered: **4.1.1.2 Animal and plant cells ** Students should be able to explain how the main sub-cellular structures, including the nucleus, cell membranes, mitochondria, chloroplasts in plant cells and plasmids in bacterial cells are related to their functions. Most animal cells have the following parts: -a nucleus -cytoplasm -a cell membrane -mitochondria -ribosomes. In addition to the parts found in animal cells, plant cells often have: -chloroplasts -a permanent vacuole filled with cell sap. Plant and algal cells also have a cell wall made of cellulose, which strengthens the cell. Students should be able to use estimations and explain when they should be used to judge the relative size or area of sub-cellular structures.
AQA GCSE Biology- Osmosis
mr_sciencemr_science

AQA GCSE Biology- Osmosis

(1)
Designed for the new specification AQA GCSE course but can be modified for other exam boards. 16 slides covering Osmosis . By the end of the powerpoint students would have covered: Water may move across cell membranes via osmosis. Osmosis is the diffusion of water from a dilute solution to a concentrated solution through a partially permeable membrane. Students should be able to: use simple compound measures of rate of water uptake use percentages calculate percentage gain and loss of mass of plant tissue. Required practical activity 3: investigate the effect of a range of concentrations of salt or sugar solutions on the mass of plant tissue.
International A-level Biology Edexcel Topic 1: Proteins
mr_sciencemr_science

International A-level Biology Edexcel Topic 1: Proteins

(0)
Designed for the new specification International A-level edexcel course but can be modified for other exam boards. 37 slides covering Proteins By the end of the powerpoint students would have covered: Know the structure of protein. Describe how polypeptides are made. Describe the primary, secondary, tertiary and quaternary structure and function of proteins. Know the structure of a globular protein and a fibrous protein and understand how their structures relate to their functions. Use a semi-quantitative method to estimate protein concentration using biuret reagent and colour standards. Includes practical details and a task using molecular models.
International A-level Biology Edexcel Topic 3- Mitosis
mr_sciencemr_science

International A-level Biology Edexcel Topic 3- Mitosis

(0)
Designed for the new specification International A-level edexcel course but can be modified for other exam boards. 18 slides covering Mitosis By the end of the powerpoint students would have covered: -Understand the cell cycle’s role in the production of identical daughter cells for growth and asexual reproduction. -Know how to calculate mitotic indices. Powerpoint contains exam questions
IGCSE Edexcel Biology (9-1) FULL COURSE
mr_sciencemr_science

IGCSE Edexcel Biology (9-1) FULL COURSE

(0)
Resources are being improved and you will have access to all future improvements upon purchase Save yourself hours of planning by buying this massive buddle, it contains 740 powerpoint slides covering the entire IGCSE Edexcel Biology (9-1) course. Engaging powerpoints with examination questions. These resources are intended to be adapted to the needs of your pupils by adding additional questions and tasks to differentiate to your needs. The buddle contains: 1 The nature and variety of living organisms 2 Structure and functions in living organisms 3 Reproduction and inheritance 4 Ecology and the environment 5 Use of biological resources Includes specification points in a excel sheet which can be used as a online check list where pupils red, amber and green each learning outcome. NEW*Includes a copy of my revision guide Edexcel International GCSE BIOLOGY 9-1: Learn with Mr Science study guide NEW* There is also weekly released science videos that can be used with the powerpoints.
Photosynthesis-Biology - IGCSE/GCSE (PDF)
mr_sciencemr_science

Photosynthesis-Biology - IGCSE/GCSE (PDF)

(0)
There are two worksheets: covers the structure and function of a leaf. cover photosynthesis and factors that affect photosynthesis. This worksheet can be used for pupils on the GCSE/IGCSE course. It can also be used to help A-level pupils review prior learning. Worksheet comes in PDF form.
Animal cell specialisation
mr_sciencemr_science

Animal cell specialisation

(0)
Check out my other resources at: www.tes.com/teaching-resources/shop/mr_science Designed for the new specification AQA GCSE course (covers spec point 4.1.1.3) but can be modified for other exam boards. 10 slides covering Animal cell specialisation . By the end of the powerpoint students would have covered: -Explain how cells become specialised through differentiation. -Why are animal cells specialised -Be able to link structure to function of different animal cells.