Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Light-independent stage of photosynthesis (OCR A-level Biology A)
GJHeducationGJHeducation

Light-independent stage of photosynthesis (OCR A-level Biology A)

(0)
This fully-resourced lesson describes the series of reactions in the light- independent stage of photosynthesis. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 5.2.1 (e) of the OCR A-level Biology A specification and detailed planning includes continual links to the previous lesson on the light-dependent stage to ensure that students recognise how the products of that stage, ATP and reduced NADP, are essential for the Calvin cycle The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and TP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RuBisCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to TP The use of the majority of the TP in the regeneration of RuBP A step-by-step guide, with discussion points where the class consider selected questions, is used to show how 6 turns of the cycle are needed to form the TP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed.
Protein synthesis: TRANSLATION (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Protein synthesis: TRANSLATION (Edexcel Int. A-level Biology)

(0)
This detailed lesson describes the role of the mRNA, tRNA, ribosomes and start and stop codons during the second stage of protein synthesis - translation. This lesson is the second in a series of two, which have been designed together to cover point 2.13 of the Edexcel International A-level Biology specification. The first lesson in this series describes transcription. Translation is a topic which is often poorly understood and so this lesson has been written to enable the students to understand how to answer the different types of questions by knowing and including the key details of the structures involved. The lesson begins by challenging the students to consider why it is so important that the amino acids are assembled in the correct order during the formation of the chain. Moving forwards, a quick quiz round called “LOST IN TRANSLATION” is used to check on their prior knowledge of the mRNA strand, the tRNA molecules, the genetic code and the ribosomes. The next task involves a very detailed description of translation that has been divided into 14 statements which the students have to put into the correct order. By giving them a passage that consists of this considerable detail, they can pick out the important parts to use in the next task where they have to answer shorter questions worth between 3 and 4 marks. These types of questions are common in the assessments and by building up through the lesson, their confidence to answer this type should increase. The final two tasks of the lesson involve another quiz, where the teams compete to transcribe and translate in the quickest time before using all that they have learnt to answer some exam-style questions which involve the genetic code and the mRNA codon table.
Cell surface membrane (Edexcel A-level Biology B)
GJHeducationGJHeducation

Cell surface membrane (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the structure of the cell surface membrane and references Singer and Nicholson’s fluid mosaic model. The detailed and engaging PowerPoint and accompanying resources have been designed to cover specification point 4.2 (i) of the Edexcel A-level Biology B specification and also makes clear links are made to related topics such as the binding of hormones as covered in topic 9 and the electron transport chain as covered in topic 5. The fluid mosaic model is introduced at the start of the lesson so that it can be referenced at appropriate points throughout the lesson. Students were introduced to phospholipids in topic 1 and an initial task challenges them to spot the errors in a passage describing the structure and properties of this molecule. This reminds them of the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to topic 9 so that students can understand how hormones or drugs will bind to target cells in this way and cause the release of cAMP on the interior of the cell. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are used and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
Osmosis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Osmosis (Edexcel A-level Biology B)

(0)
This detailed and engaging lesson describes how the passive transport of water molecules is brought about by osmosis. The PowerPoint and accompanying resources have been designed to cover the second part of specification point 4.2 (ii) as detailed in the Edexcel A-level Biology B specification and water potential is included throughout which will help students to prepare for core practical 6 It’s likely that students will have used the term concentration in their osmosis definitions at GCSE, so the aim of the starter task is to introduce water potential to allow students to begin to recognise osmosis as the movement of water molecules from a high water potential to a lower potential, with the water potential gradient. Time is taken to describe the finer details of water potential to enable students to understand that 0 is the highest value (pure water) and that this becomes negative once solutes are dissolved. Exam-style questions are used throughout the lesson to check on current understanding as well as prior knowledge checks which make links to previously covered topics such as the lipid bilayer of the cell membrane. The remainder of the lesson focuses on the movement of water between cells and a solution when these animal and plant cells are suspended in hypotonic, hypertonic or isotonic solutions.
The role of haemoglobin and dissociation curves (Edexcel A-level Biology B)
GJHeducationGJHeducation

The role of haemoglobin and dissociation curves (Edexcel A-level Biology B)

(0)
This detailed lesson describes the role of haemoglobin in the transport of respiratory gases and compares the dissociation curves for foetal and adult haemoglobin. The PowerPoint and accompanying resource have been designed to cover points 4.5 (i), (ii) and (iv) of the Edexcel A-level Biology B specification. The structure of haemoglobin was covered during topic 1, so the start of the lesson acts as a prior knowledge check where the students are challenged to recall that it is a globular protein which consists of 4 polypeptide chains. A series of exam-style questions are then used to challenge them to make the link between the solubility of a globular protein and its role in the transport of oxygen from the alveoli to the respiring cells. Moving forwards, the students will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. At this point, foetal haemoglobin and its differing affinity of oxygen is introduced and students are challenged to predict whether this affinity will be higher or lower than adult haemoglobin and to represent this on their dissociation curve. The remainder of the lesson looks at the different ways that carbon dioxide is transported around the body that involve haemoglobin. Time is taken to look at the dissociation of carbonic acid into hydrogen ions so that students can understand how this will affect the affinity of haemoglobin for oxygen in an upcoming lesson on the Bohr effect.
Topic 4.2: Cell transport mechanisms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 4.2: Cell transport mechanisms (Edexcel A-level Biology B)

4 Resources
This bundle of 4 fully-resourced lessons have been planned to include a wide variety of tasks which will engage and motivate the students whilst covering the following points as detailed in topic 4.2 of the Edexcel A-level Biology B specification: The structure of the cell surface membrane, with reference to the fluid mosaic model Passive transport is brought about by diffusion and facilitated diffusion Passive transport is brought about by osmosis The relationship between the properties of molecules and the method by which they are transported Large molecules can be transported in and out of cells by endocytosis and exocytosis The process of active transport and the role of ATP The phosphorylation of ADP and the hydrolysis of ATP If you would like to sample the quality of the lessons in this bundle, then download the ATP & active transport lesson as this has been shared for free
Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)
GJHeducationGJHeducation

Inhibitors & enzyme-catalysed reactions (CIE A-level Biology)

(0)
This lesson describes and explains how increasing the concentration of inhibitors affects the rate of an enzyme-catalysed reaction. The PowerPoint and accompanying resource are the last in a series of 4 lessons which cover the content detailed in point 3.2 (a) of the CIE A-level Biology specification but this lesson also covers point 3.2 [c] as competitive and non-competitive inhibitors are introduced and their differing effects on enzyme activity described and explained. The lesson begins with a made up round of the quiz show POINTLESS called “Biology opposites” and this allows students to recognise that inhibition is the opposite of stimulation. This introduces inhibitors as substances that reduce the rate of a reaction and students are challenged to use their general knowledge of enzymes to identify that inhibitors prevent the formation of the enzyme-substrate complex. Moving forwards, a quick quiz competition generates the abbreviation EIC (representing enzyme-inhibitor complex) and this introduces competitive inhibitors as substances that occupy the active site. The students are asked to apply their knowledge to a new situation to work out that these inhibitors must have a similar shape to the enzyme’s substrate molecule. A series of exam-style questions are used throughout the lesson and at this point, the students are challenged to work out that an increase in the substrate concentration would reduce the effect of a fixed concentration of a reversible competitive inhibitor. The rest of the lesson focuses on non-competitive inhibitors and time is taken to ensure that key details such as the disruption of the tertiary structure is understood and biological examples are used to increase the relevance. Again, students will learn that increasing the concentration of the inhibitor results in a greater inhibition and a reduced rate of reaction but that increasing the substrate concentration cannot reduce the effect as was observed with competitive inhibitors.
Ectotherms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Ectotherms (Edexcel A-level Biology B)

(0)
This lesson introduces the differences between ectotherms and endotherms and then describes the behavioural responses of an ecotherm. The PowerPoint and accompanying resource have been designed to cover specification point 9.9 (vi) of the Edexcel A-level Biology B specification which states that students should understand how ectotherms rely on the external environment for their temperature control. The main aim when designing the lesson was to support students in making sensible and accurate decisions when challenged to explain why these types of organisms have chosen to carry out a particular response. A wide range of animals are used so students are engaged in the content matter and are prepared for the unfamiliar situations that they will encounter in the terminal exam. Time is also taken to compare ectotherms against endotherms so that students can recognise the advantages and disadvantages of ectothermy when covered in the following lesson.
Endotherms (Edexcel A-level Biology B)
GJHeducationGJHeducation

Endotherms (Edexcel A-level Biology B)

(0)
This detailed lesson describes how an endotherm regulates its temperature through behaviour and also physiologically. The engaging PowerPoint and accompanying resources have been designed to cover specification point 9.9 (vii) of the Edexcel A-level Biology B specification and includes descriptions of the roles of the autonomic nervous system, thermoreceptors, hypothalamus and skin. A wide range of activities have been written into this lesson so that students remain motivated throughout and take a genuine interest in the content. Understanding checks allow the students to assess their progress whilst the prior knowledge checks on topics such as enzymes and denaturation demonstrate the importance of being able to make connections and links between topics from across the specification. In addition to these checks, quiz competitions like HAVE an EFFECT which is shown in the cover image are used to introduce key terms and values in a fun and memorable way. The lesson begins by introducing the key term, endotherm, and challenging students to use their prior knowledge and understanding of terminology to suggest what this reveals about an organism. Moving forwards, students will learn how the heat generated by metabolic reactions is used as a source of internal heat. The main part of the lesson focuses on thermoregulation in humans (mammals) and time is taken to focus on the key components, namely the sensory receptors, the thermoregulatory centre in the hypothalamus and the responses brought about by the skin. The important details of why the transfer of heat energy between the body and the environment actually leads to a decrease in temperature are explored and discussed at length to ensure understanding is complete. Students are challenged to write a detailed description of how the body detects and responds to a fall in body temperature and this task is differentiated for those students who need some extra assistance. The peripheral thermoreceptors are introduced and this leads into the final section of the lesson that considers behavioural responses in humans and other animals.
Kidney: The gross & microscopic structure (Edexcel A-level Biology B)
GJHeducationGJHeducation

Kidney: The gross & microscopic structure (Edexcel A-level Biology B)

(0)
This detailed lesson describes the gross and microscopic structure of the mammalian kidney. The engaging PowerPoint and accompanying resource have been designed to cover point 9.9 (i) of the Edexcel A-level Biology B specification. The lesson was designed to tie in with the other lessons in topic 9.9 on ultrafiltration, selective reabsorption and the control of mammalian plasma concentration and a common theme runs throughout to allow students to build their knowledge gradually and develop a deep understanding of this organ. Students will come to recognise the renal cortex and renal medulla as the two regions of the kidney and learn the parts of the nephron which are found in each of these regions. Time is taken to look at the vascular supply of this organ and specifically to explain how the renal artery divides into the afferent arterioles which carry blood towards the glomerulus and the efferent arterioles which carry the blood away. The main task of the lesson challenges the students to relate structure to function. Having been introduced to the names of each of the parts of the nephron, they have to use the details of the structures found at these parts to match the function. For example, they have to make the connection between the microvilli in the PCT as a sign that this part is involved in selective reabsorption.
The effect of temperature on enzyme activity (OCR A-level Biology)
GJHeducationGJHeducation

The effect of temperature on enzyme activity (OCR A-level Biology)

(0)
This lesson explains the effects of temperature increases on enzyme activity and describes how to calculate the temperature coefficient. The PowerPoint and the accompanying resource are part of the second lesson in a series of 3, which cover the content detailed in point 2.1.4 (d) [i] of the OCR A-level Biology A specification and this lesson has been specifically planned to tie in with an earlier lesson covering 2.1.4 (a, b & c) where the roles and mechanism of action of enzymes were introduced. The lesson begins by challenging the students to recognise optimum as a key term from its 6 synonyms that are shown on the board. Time is taken to ensure that the students understand that the optimum temperature is the temperature at which the most enzyme-product complexes are produced per second and therefore the temperature at which the rate of an enzyme-controlled reaction works at its maximum. The optimum temperatures of DNA polymerase in humans and in a thermophilic bacteria and RUBISCO in a tomato plant are used to demonstrate how different enzymes have different optimum temperatures and the roles of the latter two in the PCR and photosynthesis are briefly described to prepare students for these lessons in modules 6 and 5. Moving forwards, the next part of the lesson focuses on enzyme activity at temperatures below the optimum and at temperatures above the optimum. Students will understand that increasing the temperature increases the kinetic energy of the enzyme and substrate molecules, and this increases the likelihood of successful collisions and the production of enzyme-substrate and enzyme-product complexes. When considering the effect of increasing the temperature above the optimum, continual references are made to the previous lesson and the control of the shape of the active site by the tertiary structure. Students will be able to describe how the hydrogen and ionic bonds in the tertiary structure are broken by the vibrations associated with higher temperatures and are challenged to complete the graph to show how the rate of reaction decreases to 0 when the enzyme has denatured. The final part of the lesson introduces the Q10 temperature coefficient and students are challenged to apply this formula to calculate the value for a chemical reaction and a metabolic reaction to determine that enzyme-catalysed reactions have higher rates of reaction Please note that this lesson has been designed specifically to explain the relationship between the change in temperature and the rate of enzyme activity in a reaction and not the practical skills that is part of a lesson covering specification point 2.1.4 (d) [ii]
Topic 2.4: Cell recognition and the immune system (AQA A-level Biology)
GJHeducationGJHeducation

Topic 2.4: Cell recognition and the immune system (AQA A-level Biology)

6 Resources
This bundle contains 6 lesson PowerPoints and their accompanying resources, all of which have been planned at length to contain a wide variety of tasks that will engage and motivate the students whilst the detailed content of topic 2.4 of the AQA A-level Biology specification is covered. The following specification points are covered in this lesson bundle: The identification of cells including pathogens through use of the surface molecules The antigen The effect of antigen variability on disease and disease prevention The phagocytosis of pathogens and the subsequent destruction by lysozymes The response of T lymphocytes to a foreign antigen in the cellular response The role of antigen-presenting cells The role of helper T cells The response of B lymphocytes in the humoral response The definition and structure of an antibody The formation of an antigen-antibody complex and the destruction by agglutination and phagocytosis The roles of plasma cells and memory cells in the primary and secondary responses The use of vaccinations and the concept of herd immunity The differences between active and passive immunity The structure of HIV and its replication in helper T cells How HIV causes the symptoms of AIDS Why antibiotics are ineffective against viruses The use of antibodies in the ELISA test The variety of tasks include exam-style questions with detailed mark schemes, class discussion points of selected questions and quiz competitions to introduce values and terms in a memorable way If you would like to sample the quality of this lesson bundle, then download the roles of B and T lymphocytes lesson and the HIV and AIDS lesson as these have both been uploaded for free
Photosynthesis in the chloroplast (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Photosynthesis in the chloroplast (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the the overall reaction of photosynthesis that takes place in the grana and stroma of the chloroplast. The detailed PowerPoint and accompanying resources have been designed to cover points 5.1 & 5.5 in unit 4 of the Edexcel International A-level Biology specification and also describes the relationship between the structure and role of the chloroplast Students will have some knowledge of photosynthesis from iGCSE and were introduced to the ultrastructure of eukaryotic cells in topics 3 and 4 so this lesson has been written to test and to build on that knowledge. A version of the quiz show POINTLESS runs throughout the lesson and this maintains engagement whilst challenging the students to recall the parts of the chloroplast based on a description which is related to their function. The following structures are covered in this lesson: double membrane thylakoids (grana) stroma intergranal lamellae starch grains chloroplast DNA and ribosomes Once each structure has been recalled (or introduced) , a range of activities are used to ensure that key details are understood. As the main focus of the lesson is the reaction of photosynthesis, extra time is taken to introduce the details of the light-dependent and light-independent reactions that take place in the grana and stroma respectively. This includes descriptions of the role of the thylakoid membranes in the light-dependent reactions and the importance of ATP and reduced NADP for the reduction of GP to GALP in the Calvin cycle of the light-independent reactions. Links to other related topics are also made throughout and this is exemplified by the final task of the lesson where students are challenged on their recall of the structure, properties and function of starch (as originally covered in topic 1) As described above, this lesson has been specifically planned to prepare students for the upcoming lessons that cover the details of specification points 5.3 & 5.4 (i) and (ii).
The use of the PCR to amplify DNA (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The use of the PCR to amplify DNA (Edexcel Int. A-level Biology)

(0)
This lesson explains how the polymerase chain reaction (PCR) is used to amplify DNA. The PowerPoint has been designed to cover point 6.17 of the Edexcel International A-level Biology specification. A quick quiz competition is used to introduce the PCR abbreviation before students are encouraged to discuss the identity of the enzyme involved and to recall the action of this enzyme. Students will learn that this reaction involves cyclical heating and cooling to a range of temperatures so the next part of this lesson looks at these particular temperatures so the important parts of each of the steps can be understood. Time is taken to examine the key points in detail, such as the specific DNA polymerase that is used and how it is not denatured at the high temperature as well as the involvement of the primers.
Adaptations of organisms (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Adaptations of organisms (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson provides examples of anatomical, behavioural and physiological adaptations of organisms to their environment. The engaging and detailed PowerPoint and accompanying resources have been designed to cover point 4.19 in unit 2 of the Edexcel International A-level Biology specification and also describes the concept of a niche and makes continual links to related topics such as natural selection A quick quiz competition at the start of the lesson introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links are made to the upcoming topic of taxonomy so that students are prepared for this lesson on species and classification hierarchy.
Secondary immune response (Edexcel A-level Biology B)
GJHeducationGJHeducation

Secondary immune response (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes the role of memory cells in the secondary immune response. The PowerPoint and accompanying resources have been designed to cover specification point 6.7 (iv) of the Edexcel A-level Biology B specification but also contains a detailed description of the structure and function of antibodies and therefore covers this part of 6.7 (ii) As memory B cells differentiate into plasma cells that produce antibodies when a specific antigen is re-encountered, it was decided to link the immune responses and antibodies together in one lesson. The lesson begins by checking on the students incoming knowledge to ensure that they recognise that B cells differentiate into plasma cells and memory cells. This was introduced in a previous lesson on the specific immune response and students must be confident in their understanding if the development of immunity is to be understood. A couple of quick quiz competitions are then used to introduce key terms so that the structure of antibodies in terms of polypeptide chains, variable and constant regions and hinge regions are met. Time is taken to focus on the variable region and to explain how the specificity of this for a particular antigen allows neutralisation and agglutination to take place. The remainder of the lesson focuses on the differences between the primary and secondary immune responses and a series of exam-style questions will enable students to understand that the quicker production of a greater concentration of these antibodies in the secondary response is due to the retention of memory cells.
The action & specificity of enzymes (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

The action & specificity of enzymes (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the mechanism of action of enzymes and explains how their specificity is related to their 3D structure. The engaging PowerPoint and accompanying resources have been designed to cover points 2.7 (i), (ii) and (iii) in unit 1 of the Edexcel International A-level Biology specification and introduces intracellular and extracellular enzymes where these proteins act to reduce the activation energy. The lesson has been specifically planned to tie in with related topics that were previously covered such as protein structure, globular proteins and intracellular enzymes. This prior knowledge is tested through a series of exam-style questions along with current understanding and mark schemes are included in the PowerPoint so that students can assess their answers. Students will learn that enzymes are large globular proteins which contain an active site that consists of a small number of amino acids. Emil Fischer’s lock and key hypothesis is introduced to enable students to recognise that their specificity is the result of an active site that is complementary in shape to a single type of substrate. Time is taken to discuss key details such as the control of the shape of the active site by the tertiary structure of the protein. The induced-fit model is described so students can understand how the enzyme-susbtrate complex is stabilised and then students are challenged to order the sequence of events in an enzyme-controlled reaction. The lesson finishes with a focus on ATP synthase and DNA polymerase so that students are aware of these important intracellular enzymes when learning about the details of respiration and DNA replication
Energy, phosphorylation and ATP (CIE A-level Biology)
GJHeducationGJHeducation

Energy, phosphorylation and ATP (CIE A-level Biology)

(0)
This lesson outlines the need for energy in living organisms, and describes how ATP is formed by phosphorylation in respiration and photosynthesis. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover points 12.1 (a, b, c & e) of the CIE A-level Biology specification but can be used as a revision of topics 1, 4 and 6 as the students knowledge of cell structure, membrane transport and ATP is constantly challenged. As this is the first lesson in topic 12 (respiration), it has been specifically planned to act as an introduction to this cellular reaction and provides important details about glycolysis, the Krebs cycle and oxidative phosphorylation that will support the students to make significant progress when these stages are covered during individual lessons. Photophosphorylation is also introduced so students are prepared for the light-dependent reaction of photosynthesis in topic 13. The main focus of the start of the lesson is the demonstration of the need for energy in a variety of reactions that occur in living organisms. Students met ATP in topics 1 and 6, so a spot the errors task is used to check on their recall of the structure and function of this molecule. This will act to remind them that the release of energy from the hydrolysis of ATP can be coupled to energy-driven reactions in the cell such as active transport and a series of exam-style questions are used to challenge them on their knowledge of this form of membrane transport. They will also see how energy is needed for protein synthesis and DNA replication and the maintenance of resting potential, before more questions challenge them to apply their knowledge of cell structure and transport to explain how it is needed during the events at a synapse. The rest of the lesson focuses on the production of ATP by substrate-level, oxidative and photophosphorylation and the students will learn when ATP is formed by each of these reactions and will see how the electron transport chain in the membranes in the mitochondria and chloroplast is involved
Topic 9: Control systems (Edexcel A-level Biology B)
GJHeducationGJHeducation

Topic 9: Control systems (Edexcel A-level Biology B)

15 Resources
This bundle contains 15 lessons which are engaging and highly detailed in order to cover the difficult content as set out in topic 9 (Control systems) of the Edexcel A-level Biology B specification. The lesson PowerPoints and accompanying resources contain a wide variety of tasks which cover the following specification points: Homeostasis is the maintenance of a state of dynamic equilibrium The importance of maintaining pH, temperature and water potential in the body The meaning of negative feedback and positive feedback control The principles of hormone production by endocrine glands The two main modes of action in hormones The division of the autonomic nervous system into the sympathetic and parasympathetic systems The transport of sodium and potassium ions in a resting potential The formation of an action potential and the propagation along an axon Saltatory conduction The function of synapses The formation and effects of excitatory and inhibitory postsynaptic potentials The structure of the human retina The role of rhodopsin The distribution of rods and cone cells The control of heart rate by the autonomic nervous system The gross and microscopic structure of the kidney The production of urea in the liver and its removal from the blood by ultrafiltration Selective reabsorption in the proximal tubule Control of mammalian plasma concentration The differences between ectotherms and endotherms The regulation of temperature by endotherms If you would like to sample the quality of this lesson bundle, then download the homeostasis, resting and action potentials and the formation of urea and ultrafiltration lessons as these have been uploaded for free.
Testing for proteins, sugars, starch and lipids (OCR A-level Biology)
GJHeducationGJHeducation

Testing for proteins, sugars, starch and lipids (OCR A-level Biology)

(0)
This lesson describes the chemical tests for proteins, reducing and non-reducing sugars, starch and lipids and explains how to interpret the results. The PowerPoint and accompanying resource have been designed to cover point 2.1.2 (q) of the OCR A-level Biology A specification. The lesson begins with an explanation of the difference between a qualitative and quantitative test so that the students recognise that the four tests described within this lesson indicate the presence of a substance but not how much. The students are likely to have met these tests at GCSE so this lesson has been planned to build on that knowledge and to add the knowledge needed at this level. A step by step guide walks the students through each stage of the tests for reducing and non-reducing sugars and application of knowledge questions and prior knowledge checks are included at appropriate points to ensure understanding is complete. Time is also taken to ensure that students understand the Science behind the results. The next part of the lesson focuses on the iodine test for starch and the students will learn that the colour change is the result of the movement of an ion into the amylose helix. The rest of the lesson describes the steps in the biuret test for proteins and the emulsion test for lipids. The students will learn that the addition of sodium hydroxide and then copper sulphate will result in a colour change from light blue to lilac if a protein is present and that following the addition of a sample to ethanol and then water, a cloudy emulsion is observed if a lipid is present.