Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
The causes and treatments of DIABETES (WJEC GCSE Biology)
GJHeducationGJHeducation

The causes and treatments of DIABETES (WJEC GCSE Biology)

(0)
This is a fully-resourced lesson consisting of an engaging PowerPoint and differentiated worksheets which have been designed to cover the content of point 2.5 (i) as detailed on the WJEC GCSE Biology specification. This point states that students should demonstrate and apply their knowledge and understanding of how type I and II diabetes are caused and their respective treatments. There are links made throughout the lesson between this topic and the control of blood glucose concentration from specification point 2.5 (h). The lesson has been designed to take the format of a diabetic clinic where the students perform the duties of the attending doctor. They will move through the different stages of the role which includes identifying symptoms, diagnosis of type I or II and communication with the patients to reveal the findings. The wide range of activities will enable the students to learn how to spot that someone is suffering from diabetes and the similarities and differences between the different types so they can determine which one is being presented. The summary tasks challenge the students to construct a letter to a patient who is suffering from type II and to identify the correct type from another doctor’s letter. Understanding and previous knowledge checks are interspersed with quiz competitions, like the one shown in the cover image, which make the learning fun and memorable and enable the students to assess their progress. This lesson has been designed for students studying the WJEC GCSE Biology course but is suitable for both younger and older students who are focusing on this disease
The structure and function of the kidneys (CIE IGCSE Biology SUPPLEMENT)
GJHeducationGJHeducation

The structure and function of the kidneys (CIE IGCSE Biology SUPPLEMENT)

(1)
The engaging PowerPoint and accompanying differentiated worksheets which come as part of this lesson resource have been designed to cover the SUPPLEMENT section of topic 13.1 of the CIE IGCSE Biology specification which states that students should be able to describe the structure and function of the kidneys. Students will initially be introduced to the gross anatomy of the kidneys with the cortex and medulla and the associated ureter before moving on to the fine anatomy of the tubules and focusing on the key functions like ultrafiltration and selective reabsorption. Lots of discussion points and student discovery have been written into the lesson to encourage students to think about why a certain process takes place before attempting to explain it using the Biology. In addition, there are lots of understanding checks and prior knowledge checks so that students are challenged on their knowledge of previously learned topics such as active transport and the components of blood. The final task of the lesson challenges the students to use their knowledge of the formation of urea from earlier in topic 13 and combine it with what they have learnt in this lesson to arrange statements about the journey of this molecule into the right order This lesson has been designed for students who are studying the CIE IGCSE Biology course but is suitable for older students who are studying the kidney at A-level and want to recall some of the key details of the structure and function of this organ
Nerve impulses (AQA A-level Biology)
GJHeducationGJHeducation

Nerve impulses (AQA A-level Biology)

(0)
This is a highly detailed and engaging lesson that covers the detail of the 2nd part of specification point 6.2.1 of the AQA A-level Biology specification which states that students should be able to describe the establishment of resting potential, the changes in membrane potential that lead to depolarisation and the importance of the refractory period. This topic is commonly assessed in the terminal exams so a lot of time has been taken to design this resource to include a wide range of activities that motivate the students whilst ensuring that the content is covered in the depth of detail that will allow them to have a real understanding. Interspersed within the activities are understanding checks and prior knowledge checks to enable the students to not only assess their progress against the current topic but also to challenge themselves on the links to earlier topics such as methods of movements across cell membranes and saltatory conduction. There are also a number of quiz competitions which are used to introduce key terms and values in a fun and memorable way and discussion points to encourage the students to consider why a particular process or mechanism occurs. Over the course of the lesson, the students will learn and discover how the movement of ions across the membrane causes the membrane potential to change. They will see how the resting potential is maintained through the use of the sodium/potassium pump and potassium ion leakage. There is a real focus on depolarisation to allow students to understand how generator potentials can combine and if the resulting depolarisation then exceeds the threshold potential, a full depolarisation will occur. At this point in the lesson students will discover how the all or nothing response explains that action potentials have the same magnitude and that instead a stronger stimulus is linked to an increase in the frequency of the transmission. The rest of the lesson challenges the students to apply their knowledge to explain how repolarisation and hyperpolarisation result and to suggest advantages of the refractory period for nerve cells. This lesson has been designed for students studying the AQA A-level Biology course and ties in nicely with other uploaded lessons on mammalian sensory receptors and the structures and functions of the neurones.
Cholinergic synapses and neuromuscular junctions (AQA A-level Biology)
GJHeducationGJHeducation

Cholinergic synapses and neuromuscular junctions (AQA A-level Biology)

(0)
This fully-resourced lesson covers the content of the first part of specification point 6.2.2 of the AQA A-level Biology specification that states that students should be able to describe the detailed structure of a cholinergic synapse and a neuromuscular junction and be able to compare the transmission across both of these structures. The majority of the lesson uses the cholinergic synapse as the example but other neurotransmitters and drugs are considered so students are prepared to describe the differing effects on the synapse. The lesson begins by using a version of the WALL (as shown in the cover image) which asks the students to group 12 words into three groups of 4. Not only will this challenge their prior knowledge from topics earlier in this module but it will also lead to the discovery of four of the structures that are found in a synapse. Moving forwards, students are introduced to aectylcholine as the neurotransmitter involved at cholinergic synapses and they will start to add labels to the structures found in the pre-synaptic bulb. Time is taken to focus on certain structures such as the voltage gated channels as these types of channel were met previously when looking at the depolarisation of a neurone. There is plenty of challenge and discovery as students are pushed to explain why organelles like mitochondria would be found in large numbers in the bulb. With this process being a cascade of events, a bullet point format is used to ensure that the key content is taken in by the students and again key points like exocytosis and the action of acetylcholinesterase are discussed further. The next part of the lesson challenges the application aspect of the specification as students are introduced to unfamiliar situations in terms of synapses with new drugs like MDMA and are asked to work out and explain how these affect the nervous transmission. The final part of the lesson focuses on the NMJ and challenges the students to use the knowledge gained from earlier in the lesson to develop their understanding of these junctions. Time is taken to look at the structure of the sarcolemma to enable students to understand how the binding of the acetylcholine leads to the wave of depolarisation passing to the transverse tubules. Understanding checks and prior knowledge checks are included throughout the lesson so that students can not only assess their progress against the current topic but also see whether they can make links to earlier topics. This lesson has been designed for students studying the AQA A-level Biology course but could be used with very able GCSE students who are keen to develop their understanding of synapses over and above the small detail that is provided at that level. This lesson also ties in nicely with the other uploaded lessons from topic 6
OSMOREGULATION (AQA A-level Biology)
GJHeducationGJHeducation

OSMOREGULATION (AQA A-level Biology)

(1)
This is a highly-detailed and fully-resourced lesson which covers the part of specification point 6.4.3 of the AQA A-level Biology specification which states that students should be able to describe the roles of the hypothalamus, posterior pituitary and ADH in osmoregulation. Students learnt about the principles of homeostasis and negative feedback in an earlier lesson, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work. This lesson has been written for students studying on the AQA A-level Biology course and ties in nicely with the other uploaded lessons which cover this specification point as well as the whole of topic 6.
The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)
GJHeducationGJHeducation

The control of BLOOD WATER POTENTIAL (OCR A-level Biology A)

(0)
This is a highly-detailed and fully-resourced lesson which covers the detail of specification point 5.1.2 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the roles of the hypothalamus, posterior pituitary, ADH and the collecting duct in the control of the water potential of the blood. Students learnt about the principles of homeostasis and negative feedback in an earlier module, so this lesson acts to build on that knowledge and challenges them to apply their knowledge. A wide range of activities have been included in the lesson to maintain motivation and engagement whilst the understanding and prior knowledge checks will allow the students to assess their progress as well as challenge themselves to make links to other Biology topics. The lesson begins with a discussion about how the percentage of water in urine can and will change depending on the blood water potential. Students will quickly be introduced to osmoregulation and they will learn that the osmoreceptors and the osmoregulatory centre are found in the hypothalamus. A considerable amount of time is taken to study the cell signalling between the hypothalamus and the posterior pituitary gland by looking at the specialised neurones (neurosecretory cells). Links are made to the topics of neurones, nerve impulses and synapses and the students are challenged to recall the cell body, axon and vesicles. The main section of the lesson forms a detailed description of the body’s detection and response to a low blood water potential. The students are guided through this section as they are given 2 or 3 options for each stage and they have to use their knowledge to select the correct statement. The final task asks the students to write a detailed description for the opposite stimulus and this task is differentiated so those who need extra assistance can still access the work. This lesson has been written for students studying on the OCR A-level Biology A course and ties in nicely with the other uploaded lessons in module 5.1.2 which include the structure of the nephron, ultrafiltration and selective reabsorption.
Ultrafiltration (CIE International A-level Biology)
GJHeducationGJHeducation

Ultrafiltration (CIE International A-level Biology)

(0)
This detailed lesson has been written to cover the 1st part of specification point 14.1 (f) of the CIE International A-level Biology specification which states that students should be able to describe how the process of ultrafiltration is involved with the formation of urine. The aim of the design was to give the students the opportunity to discover this particular function and to be able to explain how the mechanisms found in the glomerulus and the Bowman’s capsule control the movement of small molecules out of the blood plasma. Key terminology is used throughout and students will learn how the combination of the capillary endothelium and the podocytes creates filtration slits that allow glucose, water, urea and ions through into the Bowman’s capsule but ensure that blood cells and plasma proteins remain in the bloodstream. A number of quiz competitions are used to introduce key terms and values in a fun and memorable way whilst understanding and prior knowledge checks allow the students to assess their understanding of the current topic and to challenge themselves to make links to earlier topics. The final task of the lesson challenges the students to apply their knowledge by recognising substances found in a urine sample that shouldn’t be present and to explain why this would cause a problem This lesson has been written for students studying on the CIE International A-level Biology course and ties in closely with the other kidney lessons on the structure of the nephron, selective reabsorption and osmoregulation
Sex-linkage (AQA A-level Biology)
GJHeducationGJHeducation

Sex-linkage (AQA A-level Biology)

(3)
This fully-resourced lesson explores the inheritance of sex-linked diseases in humans and then challenges the students to apply their knowledge to examples in other animals. The detailed PowerPoint and associated differentiated resources have been designed to cover the part of point 7.1 of the AQA A-level specification which states that students should be able to use fully-labelled genetic diagrams to predict the results of crosses involving sex-linkage. Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to carry out a dihybrid cross that involves a sex-linked disease and an autosomal disease before applying their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender. All of the tasks are differentiated so that students of differing abilities can access the work and all exam questions have fully-explained, visual markschemes to allow them to assess their progress and address any misconceptions
ATP as the energy currency (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

ATP as the energy currency (Pearson Edexcel A-level Biology A)

(0)
This lesson describes how the hydrolysis of ATP supplies energy for biological processes and how the phosphorylation of ADP requires energy. The PowerPoint has been designed to cover point 5.6 of the Pearson Edexcel A-level Biology A specification and also describes how ATP is made in the light-dependent stage of photosynthesis and is needed in the light-independent stage. The start of the lesson focuses on the structure of this energy currency and challenges the students to use their knowledge of nucleotides and specifically RNA nucleotides to recognise the components of ATP. As a result, they will learn that this molecule consists of adenine, ribose and three phosphate groups. In order to release the stored energy, ATP must be broken down and students will be given time to discuss which reaction will be involved as well as the products of this reaction. Time is taken to describe how the hydrolysis of ATP can be coupled to energy-requiring reactions within cells and the examples of skeletal muscle contraction are used as this is covered in greater detail in topic 7. The final part of the lesson considers how ATP is formed when ADP is phosphorylated and students will learn that this occurs in the mitochondria and chloroplast during aerobic respiration and photosynthesis respectively, so that it ties in with the upcoming lessons in topic 5 and 7.
Light-independent reaction (AQA A-level Biology)
GJHeducationGJHeducation

Light-independent reaction (AQA A-level Biology)

(0)
This fully-resourced lesson describes the light independent reaction of photosynthesis and explains how reduced NADP is used to form a simple sugar. The detailed PowerPoint and accompanying resources have been designed to cover the second part of point 5.1 of the AQA A-level Biology specification and lengthy planning has ensured that links are continually made to the previous lesson on the light-dependent reaction so that students can understand how the products of that stage are essential for the Calvin cycle The lesson begins with an existing knowledge check where the students are challenged to recall the names of structures, substances and reactions from the light-dependent stage in order to reveal the abbreviations of the main 3 substances in the light-independent stage. This immediately introduces RuBP, GP and TP and students are then shown how these substances fit into the cycle. The main section of the lesson focuses on the three phases of the Calvin cycle and time is taken to explore the key details of each phase and includes: The role of RuBisCO in carbon fixation The role of the products of the light-dependent stage, ATP and reduced NADP, in the reduction of GP to TP The use of the majority of the TP in the regeneration of RuBP A step-by-step guide, with selected questions for the class to consider together, is used to show how 6 turns of the cycle are needed to form the TP that will then be used to synthesise 1 molecule of glucose. A series of exam-style questions are included at appropriate points of the lesson and this will introduce limiting factors as well as testing their ability to answer questions about this stage when presented with an unfamiliar scientific investigation. The mark schemes are included in the PowerPoint so students can assess their understanding and any misconceptions are immediately addressed. This lesson has been specifically written to tie in with the previous lessons on the structure of a chloroplast and the light-dependent stage as well as upcoming lesson on limiting factors
Factors affecting photosynthesis (OCR A-level Biology)
GJHeducationGJHeducation

Factors affecting photosynthesis (OCR A-level Biology)

(1)
This fully-resourced lesson describes how light intensity, carbon dioxide concentration and temperature limit the rate of photosynthesis. The PowerPoint and accompanying resources have been designed to cover point 5.2.1 (g) (i) of the OCR A-level Biology A specification and also includes a brief consideration of water stress. The lesson has been specifically written to tie in with the three previous lessons in this module which covered the structure of the chloroplast, the light-dependent and light-independent stages and the uses of TP. Exam-style questions are included throughout the lesson and these require the students to explain why light intensity is important for both reactions as well as challenging them on their ability to describe how the relative concentrations of GP, TP and RuBP would change as carbon dioxide concentration decreases. There are also links to previous topics such as enzymes when they are asked to explain why an increase in temperature above the optimum will limit the rate of photosynthesis. Step by step guides are included to support them to form some of the answers and mark schemes are always displayed so that they can quickly assess their understanding and address any misconceptions.
Factors that limit photosynthesis (Edexcel A-level Biology B)
GJHeducationGJHeducation

Factors that limit photosynthesis (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how carbon dioxide, light intensity and temperature limit the rate of photosynthesis. The PowerPoint and accompanying resources have been designed to cover point 5.7 (viii) of the Edexcel A-level Biology B specification The lesson has been specifically written to tie in with the four previous lessons in this topic which covered the structure of the chloroplast, the light-dependent and light-independent stages and GALP as a raw material. Exam-style questions are included throughout the lesson and these require the students to explain why light intensity is important for both reactions as well as challenging them on their ability to describe how the relative concentrations of GP, GALP and RuBP would change as carbon dioxide concentration decreases. There are also links to previous topics such as enzymes when they are asked to explain why an increase in temperature above the optimum will limit the rate of photosynthesis. Step by step guides are included to support them to form some of the answers and mark schemes are always displayed so that they can quickly assess their understanding and address any misconceptions
Structure & properties of cell membranes (Edexcel International A-level Biology)
GJHeducationGJHeducation

Structure & properties of cell membranes (Edexcel International A-level Biology)

(0)
This detailed lesson describes the structure and properties of the cell membrane, focusing on the phospholipid bilayer, cholesterol and membrane proteins. The detailed PowerPoint and accompanying resources have been designed to cover the details of point 2.2 (i) of the Edexcel International A-level Biology specification and clear links are made to Singer and Nicholson’s fluid mosaic model which is covered in the following lesson Students met triglycerides in topic 1 and so a quick quiz competition at the start of the lesson challenges their recall of the structure of these lipids so that they can recognise the similarities and differences to the structure of phospholipids. Time is taken to look at the differing properties of the phosphate head and the fatty acid tails in terms of water and the class is challenged to work out how the phospholipids must be arranged when there’s an aqueous solution on the inside and outside of the cell. This introduces the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are fused and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
GALP as a raw material (Edexcel A-level Biology B)
GJHeducationGJHeducation

GALP as a raw material (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how GALP is used as a raw material in the production of monosaccharides, amino acids and other molecules. The engaging and detailed PowerPoint and accompanying resources have been primarily designed to cover point 5.7 (vii) of the Edexcel A-level Biology B specification concerning the uses of GALP but as the lesson makes continual references to biological molecules, it can act as a revision tool for a lot of the content of topic 1. The previous lesson covered the light-independent stage and this lesson builds on that understanding to demonstrate how the product of the Calvin cycle, glyceraldehyde phosphate, is used. The start of the lesson challenges the students to identify two errors in a diagram of the cycle so that they can recall that most of the GALP molecules are used in the regeneration of ribulose bisphosphate. A quiz version of Pointless runs throughout the lesson and this is used to challenge the students to recall a biological molecule from its description. Once each molecule has been revealed, time is taken to go through the details of the formation and synthesis of this molecule from GALP or from GP in the case of fatty and amino acids. The following molecules are considered in detail during this lesson: glucose (and fructose and galactose) sucrose starch and cellulose glycerol and fatty acids amino acids nucleic acids A range of activities are used to challenge their prior knowledge of these molecules and mark schemes are always displayed for the exam-style questions to allow the students to assess their understanding. As detailed above, this lesson has been specifically written to tie in with the earlier lessons in this module on the structure of the chloroplast and the light-dependent and light-independent stages of photosynthesis.
Eukaryotic cells (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Eukaryotic cells (Edexcel Int. A-level Biology)

(0)
This fully-resourced lesson describes the ultrastructure of eukaryotic cells and the functions of each of the organelles in these cells. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 3.1, 3.2 & 3.3 of the Edexcel International A-level Biology specification and therefore this lesson also describes how all living organisms are made of cells and that these cells are organised into tissues, organs and organ system in multicellular organisms. As cells are the building blocks of living organisms, it makes sense that they would be heavily involved in all of the 8 topics in the Edexcel course and intricate planning has ensured that links to previously covered topics as well as upcoming ones are made throughout the lesson. The cell theory is introduced at the start of the lesson and the first 2 principles are explained. Students will see how epithelial cells are grouped together to form different types of epithelium in the respiratory tract and their prior knowledge of gas exchange at the alveoli from topic 2 is tested with a series of questions. The rest of the lesson uses a wide range of activities, that include exam-style questions, class discussion points and quick quiz competitions, to maintain motivation and engagement whilst describing the relationship between the structure and function of the following organelles: nucleus nucleolus centrioles ribosomes rough endoplasmic reticulum Golgi apparatus lysosomes smooth endoplasmic reticulum mitochondria cell surface membrane All of the worksheets have been differentiated to support students of differing abilities whilst maintaining challenge Due to the detail that is included in this lesson, it is estimated that it will take in excess of 3 hours of allocated A-level teaching time to go through all of the tasks
Topic 1: Molecules, Transport & Health (Edexcel International A-level Biology)
GJHeducationGJHeducation

Topic 1: Molecules, Transport & Health (Edexcel International A-level Biology)

10 Resources
This bundle contains 10 detailed lesson PowerPoints and the variety of tasks that are contained within these slides and the accompanying resources will engage and motivate the students whilst covering the following specification points within topic 1 of the Edexcel International A-level Biology specification: The importance of water as a solvent in transport The difference between monosaccharides, disaccharides and polysaccharides The relationship between the structure and function of monosaccharides The formation and breakdown of disaccharides The relationship between the structure and function of glycogen, amylose and amylopectin The synthesis of triglycerides The differences between saturated and unsaturated lipids The relationship between the structure of capillaries, arteries and veins and their functions Atrial systole, ventricular systole and cardiac diastole as the three stages of the cardiac cycle The operation of the mammalian heart and the major blood vessels The role of haemoglobin in the transport of oxygen and carbon dioxide The oxygen dissociation curve for foetal haemoglobin and during the Bohr effect The blood clotting process If you want to sample the quality of this bundle, then download the glycogen, amylose and amylopectin, cardiac cycle and blood clotting lessons as these have been uploaded for free
Haemoglobin & the Bohr effect (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Haemoglobin & the Bohr effect (Edexcel Int. A-level Biology)

(0)
This lesson describes the role of haemoglobin in transport and explains the change in the dissociation curve when there is an increased concentration of carbon dioxide (the Bohr effect). The detailed PowerPoint and accompanying resources have been designed to cover points 1.9 (i) & (ii) of the Edexcel International A-level Biology specification and this lesson also compares the oxyhaemoglobin dissociation curve of foetal haemoglobin against maternal haemoglobin. The lesson begins with a version of the quiz show Pointless and this introduces haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure as it is formed of 4 polypeptide chains which each contain a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. At this point, foetal haemoglobin and its differing affinity of oxygen is introduced and students are challenged to predict whether this affinity will be higher or lower than adult haemoglobin and to represent this on their dissociation curve. Moving forwards, the different ways that carbon dioxide is transported around the body involving haemoglobin are described and the dissociation of carbonic acid into hydrogen ions is discussed so that students can understand how this will affect the affinity of haemoglobin for oxygen in the final part of the lesson on the Bohr effect. A quick quiz is used to introduce Christian Bohr and the students are given some initial details of his described effect. This leads into a series of discussions where the outcome is the understanding that an increased concentration of carbon dioxide decreases the affinity of haemoglobin for oxygen. The students will learn that this reduction in affinity is a result of a decrease in the pH of the cell cytoplasm which alters the tertiary structure of the haemoglobin. The lesson finishes with a series of questions where the understanding and application skills are tested as students have to explain the benefit of the Bohr effect for an exercising individual.
Classification hierarchy (Edexcel A level Biology B)
GJHeducationGJHeducation

Classification hierarchy (Edexcel A level Biology B)

(0)
This lesson describes the classification system that consist of a hierarchy of domain, kingdom, phylum, class, order, family, genus and species. The engaging PowerPoint and accompanying resource have been designed to cover point 3.1 (i) of the Edexcel A-level Biology B specification and also includes details of the use of the binomial naming system. The lesson begins by looking at the meaning of a population in Biology so that the term species can be introduced. A hinny, which is the hybrid offspring of a male horse and a female donkey, is used to explain how these two organisms must be members of different species because they are unable to produce fertile offspring. Moving forwards, students will learn that species is the lowest taxon in the modern-day classification hierarchy. A quiz runs throughout the lesson and this particular round will engage the students whilst they learn the names of the other 7 taxa and the horse and the donkey from the earlier example are used to complete the hierarchy. Students will understand that the binomial naming system was introduced by Carl Linnaeus to provide a universal name for each species and they will be challenged to apply their knowledge by completing a hierarchy for a modern-day human, by spotting the correct name for an unfamiliar organism and finally by suggesting advantages of this system.
Starch & cellulose (Edexcel A-level Biology A)
GJHeducationGJHeducation

Starch & cellulose (Edexcel A-level Biology A)

(0)
This detailed lesson describes the relationship between the structure and function of starch and cellulose. The engaging PowerPoint and accompanying resource have been designed to cover point 4.9 of the Pearson Edexcel A-level Biology A specification and focuses on the importance of the glycosidic and hydrogen bonds for the structure of these polysaccharides. The structure of amylose and amylopectin was described during a lesson in topic 1, so the start of this lesson challenges the students on their recall of these details. They have to complete a comparison table for these two polysaccharides by identifying the monomer and type of glycosidic bonds that are found in each of the structures. Time is taken to explain how the greater resistance to digestion of amylose means that this carbohydrate is important for plant energy storage whereas the multiple chain ends in the branched amylopectin means that this polysaccharide can be hydrolysed quickly when energy is needed. The rest of the lesson describes the structure of cellulose and focuses on the link between the structure and the need for this polysaccharide to support the plant cell as well as the whole plant. Students will see how every other beta glucose monomer is rotated by 180 degrees and will learn that hydrogen bonds form between these molecules on the same chain as well as between adjacent chains in a cellulose microfibril. The lesson concludes with a quick quiz competition where the students have to compete to open a safe using a combination made up of key values associated with glycogen, starch and cellulose.
Cohesion-tension model (Edexcel A-level Biology B)
GJHeducationGJHeducation

Cohesion-tension model (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how the cohesion-tension model explains the transport of water from the roots to the shoots. The detailed PowerPoint and accompanying resources have been designed to cover point 4.7 (iii) of the Edexcel A-level Biology B specification This lesson has been written to follow on from the end of the previous lesson, which finished with the description of the transport of the water and mineral ions from the endodermis to the xylem. Students are immediately challenged to use this knowledge to understand root pressure and the movement by mass flow down the pressure gradient. Moving forwards, time is taken to study the details of transpiration pull and then the main focus is the interaction between cohesion and tension. The role of adhesive forces in capillary action is also explained. Understanding is constantly checked through a range of tasks and prior knowledge checks are also written into the lesson to challenge the students to make links to previously covered topics such as the structure of the transport tissues.