Hero image

GJHeducation's Shop

Average Rating4.50
(based on 919 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1235k+Views

2041k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
AQA A-level biology revision
GJHeducationGJHeducation

AQA A-level biology revision

8 Resources
This bundle contains 8 revision lessons which use multiple-choice assessments consisting of 20 questions to challenge the students on their knowledge and understanding of all 8 topics in the AQA A-level biology specification. In addition to the assessments, each lesson includes a PowerPoint which reveals the answers and contains additional questions to check on further knowledge and detail. If you would like to sample the quality of these lessons, then download the topic 1 and 6 revision lessons as these have been uploaded for free.
Genetic engineering (GCSE)
GJHeducationGJHeducation

Genetic engineering (GCSE)

(0)
This lesson uses the example of the genetic engineering of bacteria to produce insulin to walk students through the steps involved in this process. It has been written for GCSE students and therefore includes the detail required at this level, such as the involvement of restriction enzymes and the sticky ends that their cut produces. The lesson begins by challenging students to recognise that insulin is being described by a series of clues. Some further details of this hormone are recalled to test their previous knowledge of the endocrine system and also to lead into the genetic engineering of bacteria to make this protein. Moving forwards, time is taken to go through the details of plasmids and how they act as vectors as well as the enzymes, restriction and ligase. The main task of the lesson uses a series of descriptions to go through the steps involved in the process. Words or phrases are missing from each description so students have to use the terms they’ve encountered in this lesson as well as their prior knowledge to complete the step. Discussion-provoking questions are added to encourage the students to consider why certain parts of the process occur. The lesson concludes by the consideration of other organisms which have been genetically engineered as well as some of the risks of the process, which students are asked to complete for homework. As detailed above, this lesson has been designed for GCSE students but could be used with students taking A-level Biology, who are struggling to understand the detail found at this level and need to revisit the foundations.
Topic 7: Run for your life (Pearson Edexcel A-level Biology A)
GJHeducationGJHeducation

Topic 7: Run for your life (Pearson Edexcel A-level Biology A)

17 Resources
This bundle contains 17 fully-resourced lessons which have been designed to cover the content as detailed in topic 7 (Run for your life) of the Pearson Edexcel A-Level Biology A (Salters Nuffield) specification. The specification points that are covered within these lessons include: The interaction of muscles, tendons, ligaments and the skeleton in movement The contraction of skeletal muscle by the sliding filament theory The overall reaction of aerobic respiration The enzymes involved in the multi-stepped process of respiration The roles of glycolysis in aerobic and anaerobic respiration The role of the link reaction and the Krebs cycle in the complete oxidation of glucose Understand how ATP is synthesised by oxidative phosphorylation The fate of lactate after a period of anaerobic respiration The myogenic nature of cardiac muscle The coordination of the heart beat The use of ECGs to aid diagnosis Calculating cardiac output The control of heart rate by the medulla oblongata The control of ventilation rate The structure of a muscle fibre The structural and physiological differences between fast and slow twitch muscle fibres The meaning of negative and positive feedback control The principle of negative feedback in maintaining systems within narrow limits The importance of homeostasis to maintain the body in a state of dynamic equilibrium during exercise DNA transcription factors, including hormones The lessons have been planned so that they contain a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other topics within topic 7 and earlier topics If you would like to see the quality of the lessons, download the link reaction and Krebs cycle, the fate of lactate,the using ECGs and transcription factors lessons as these have been uploaded for free
Converting units (Maths in Science)
GJHeducationGJHeducation

Converting units (Maths in Science)

(0)
A fully resourced lesson which includes an informative lesson presentation (34 slides) and differentiated worksheets that show students how to convert between units so they are confident to carry out these conversions when required in Science questions. The conversions which are regularly seen at GCSE are covered as well as some more obscure ones which students have to be aware of. A number of quiz competitions are used throughout the lesson to maintain motivation and to allow the students to check their progress in an engaging way This lesson has been designed for GCSE students but is suitable for KS3
Ecosystems and biomass (AQA A-level Biology)
GJHeducationGJHeducation

Ecosystems and biomass (AQA A-level Biology)

(1)
This concise lesson acts as an introduction to topic 5.3, Energy and Ecosystems, and describes how plant biomass is formed, measured and estimated. The engaging PowerPoint is the 1st in a series of 3 lessons which have been designed to cover the detailed content of topic 5.3 of the AQA A-level Biology specification. A quiz round called REVERSE Biology Bingo runs throughout the lesson and challenges students to recognise the following key terms from descriptions called out by the bingo caller: community ecosystem abiotic factor photosynthesis respiratory substrate biomass calorimetry The ultimate aim of this quiz format is to support the students to understand that any sugars produced by photosynthesis that are not used as respiratory substrates are used to form biological molecules that form the biomass of a plant and that this can be estimated using calorimetry. Due to the clear link to photosynthesis, a series of prior knowledge checks are used to challenge the students on their knowledge of this cellular reaction but as this is the first lesson in the topic, the final section of the lesson looks forwards and introduces the chemical energy store in the plant biomass as NPP and students will also meet GPP and R so they are partially prepared for the next lesson.
Regulation of BLOOD GLUCOSE CONCENTRATION (OCR A-level Biology A)
GJHeducationGJHeducation

Regulation of BLOOD GLUCOSE CONCENTRATION (OCR A-level Biology A)

(1)
This highly detailed, fully-resourced lesson has been designed to cover the content of specification point 5.1.4 (d) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the regulation of blood glucose concentration. There is focus on the negative feedback mechanisms that release insulin or glucagon and the role of the liver. It challenges the students recall of the control of insulin release from the beta cells which was taught in an earlier lesson. A wide range of activities will maintain motivation and engagement whilst the content is covered in detail to enable the students to explain how the receptors in the pancreas detect the concentration change and how the hormones attaching to receptor sites on the liver triggers a series of events in this effector organ. This is a topic which has a huge amount of difficult terminology so time is taken to look at all of the key words, especially those which begin with the letter G so students are able to use them accurately in the correct context. The action of adrenaline is also considered and linked to the breakdown of glycogen to glucose during glycogenolysis. This lesson has been written for students studying on the OCR A-level Biology A course and ties in with the lesson on the differences between type I and II diabetes mellitus as well as the human endocrine system
Cell theory and organisation (Edexcel A level Biology B)
GJHeducationGJHeducation

Cell theory and organisation (Edexcel A level Biology B)

(0)
This detailed lesson introduces the 3 main principles of the cell theory and describes how cells are organised into tissues, organs and organ systems. The engaging PowerPoint and accompanying resources have been designed to cover points 2.1 (i) & (ii) of the Edexcel A-level Biology B specification. The cell theory is introduced at the start of the lesson and the 1st principle is immediately discussed to ensure that students are aware that all living organisms are made of cells. This principle is discussed with relation to viruses to enable students to understand that the lack of cell structure in a virus is one of the reasons that they are not considered to be living. The second principle states that the cell is the basic unit of structure and organisation and this leads into the main part of the lesson where specialised cells and their groupings into tissues are considered. Students are challenged to compare an amoeba against a human to get them to focus on the difference in the SA/V ratio. This acts as an introduction into the process of differentiation and a recognition of its importance for multicellular organisms. Students will discover that a zygote is a stem cell which can express all of the genes in its genome and divide by mitosis. Time is then taken to introduce gene expression as this will need to be understood in the later topics of the course. Moving forwards, the lesson uses the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students will understand why the shape and arrangement of these cells differ in the trachea and alveoli in line with function. The link between specialised cells and tissues is made at this point of the lesson with these examples of epithelium and students will also see how tissues are grouped into organs and then into organ systems. The third principle states that cells arise from pre-existing cells and this will be demonstrated later in topic 2 with mitosis and meiosis.
Populations in ecosystems (AQA A-level Biology)
GJHeducationGJHeducation

Populations in ecosystems (AQA A-level Biology)

(1)
This lesson focuses on the key terms associated with ecosystems and describes how populations are affected by a range of factors. The PowerPoint and accompanying resources are part of the 1st lesson in a series of 4 lessons that cover the details of point 7.4 of the AQA A-level Biology specification As shown in the cover image, a modified version of the quiz competition BLOCKBUSTERS runs throughout the lesson and this introduces new terms as well as challenging students to recall key terms that were encountered in previous topics. These include population, ecosystems, competition, niche, abiotic factors and carrying capacity. Each time a term is met, time is taken to describe its meaning and to explain its relevance and context in this topic of populations in ecosystems. Exam-style questions are also used to challenge the students to apply their understanding and displayed mark schemes allow them to assess their progress. Prior knowledge checks interspersed within the lesson which check on topics such as the nitrogen cycle, adaptations and the biological classification of a species
Investigating diversity (AQA A-level Biology)
GJHeducationGJHeducation

Investigating diversity (AQA A-level Biology)

(1)
This lesson describes how genetic diversity within, or between species, can be investigated by comparison of characteristics or biological molecules. The PowerPoint and accompanying worksheets are primarily designed to cover the content of point 4.7 of the AQA A-level Biology specification but as this is the last lesson in the topic, it has also been planned to contain a range of questions, tasks and quiz rounds that will challenge the students on their knowledge and understanding of topic 4. Over the course of the lesson, the students will discover that comparisons of measurable or observable characteristics, DNA and mRNA sequences and the primary structure of common proteins can all be used to investigate diversity. Links are continually made to prior learning, such as the existence of convergent evolution as evidence of the need to compare biological molecules as opposed to the simple comparison of phenotypes. The issues associated with a limited genetic diversity are discussed and the interesting biological example of the congenital dysfunctions consistently found in the Sumatran tigers in captivity in Australia and New Zealand is used to demonstrate the problems of a small gene pool. Moving forwards, the study of the 16S ribosomal RNA gene by Carl Woese is introduced and students will learn that this led to the adoption of the three-domain system in 1990. The final part of the lesson describes how the primary structure of proteins like cytochrome c that is involved in respiration and is therefore found in most living organisms can be compared and challenges the students to demonstrate their understanding of protein synthesis when considering the differences between humans and rhesus monkeys.
Topic 5.2: Respiration (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5.2: Respiration (AQA A-level Biology)

7 Resources
All 7 of the lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 5.2 (Respiration) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: Respiration produces ATP Glycolysis as the first stage of aerobic and anaerobic respiration The phosphorylation of glucose and the production and oxidation of triose phosphate The production of lactate or ethanol in anaerobic conditions The Link reaction The oxidation-reduction reactions of the Krebs cycle The synthesis of ATP by oxidative phosphorylation The chemiosmotic theory Lipids and proteins as respiratory substrates The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other sub-topics within this topic and earlier topics If you would like to see the quality of the lessons, download the anaerobic respiration and oxidative phosphorylation lessons as these have been uploaded for free
Specialised eukaryotic cells (AQA A-level Biology)
GJHeducationGJHeducation

Specialised eukaryotic cells (AQA A-level Biology)

(0)
This fully-resourced lesson describes how the eukaryotic cells of complex multicellular organisms become specialised for specific functions. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the 3rd part of point 2.1.1 of the AQA A-level Biology specification and also describes how these specialised cells are organised into tissues, organs and organ systems. The start of the lesson focuses on the difference in the SA/V ratio of an amoeba and a human in order to begin to explain why the process of differentiation is critical for multicellular organisms. Students will discover that a zygote is a stem cell which can express all of the genes in its genome and divide by mitosis. Time is then taken to introduce gene expression as this will need to be understood in the later topics of the course. Moving forwards, the lesson uses the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students will understand why the shape and arrangement of these cells differ in the trachea and alveoli in line with function. The link between specialised cells and tissues is made at this point of the lesson with these examples of epithelium and students will also see how tissues are grouped into organs and then into organ systems. The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy mesophyll cells and the guard cells are covered at length and in detail. Step by step guides will support the students so that they can recognise the importance of the structures and links are made to upcoming topics such as diffusion, active transport and osmosis so that students are prepared for these when covered in the future. This lesson has been written to continually tie in with the previous two lessons in this specification point which are uploaded under the titles of the structure of eukaryotic animal and plant cells.
Maths in AQA GCSE Combined Science REVISION
GJHeducationGJHeducation

Maths in AQA GCSE Combined Science REVISION

(0)
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the AQA GCSE Combined Science papers. The mathematical element of the AQA GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more. The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “YOU DO THE MATH” and “FILL THE VOID”. The following mathematical skills (in a scientific context) are covered in this lesson: The use of Avogadro’s constant Rearranging the formula of an equation Calculating the amount in moles using mass and relative formula mass Calculating the relative formula mass for formulae with brackets Using the Periodic Table to calculate the number of sub-atomic particles in atoms Changes to electrons in ions Balancing chemical symbol equations Converting between units Calculating concentration in grams per dm cubed and volumes of solutions Calculating size using the magnification equation Using the mean to estimate the population of a sessile species Calculating percentages to prove the importance of biodiversity Calculating percentage change Calculating the acceleration from a velocity-time graph Recalling and applying the Physics equations Understanding prefixes that determine size Leaving answers to significant figures and using standard form Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance. Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.
Edexcel GCSE Biology REVISION LESSONS
GJHeducationGJHeducation

Edexcel GCSE Biology REVISION LESSONS

9 Resources
This bundle of 9 revision lessons covers the specification content in all of the topics of the Pearson Edexcel GCSE Biology 9-1 specification. Topic 1: Key concepts in Biology Topic 2: Cells and control Topic 3: Genetics Topic 4: Natural selection and modification Topic 5: Health, disease and the development of medicines Topic 6: Plant structures and functions Topic 7: Animal coordination, control and homeostasis Topic 8: Exchange and transport in animals Topic 9: Ecosystems and material cycles All of the lessons have been written to include a range of activities to engage the students whilst enabling them to assess and evaluate their content knowledge so that they recognise those areas which will need further attention prior to the exams.
PAPER 1 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)
GJHeducationGJHeducation

PAPER 1 FOUNDATION TIER REVISION (Edexcel GCSE Combined Science)

(0)
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics B1 - B5, that will assessed on PAPER 1. It has been specifically designed for students on the Pearson Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood. The lesson has been written to take place at the local hospital where the students have to visit numerous wards and clinics and the on-site pharmacy so that the following sub-topics can be covered: Cancer as the result of uncontrolled cell division The production of gametes by meiosis Mitosis and the cell cycle Sex determination The difference between communicable and non-communicable diseases The pathogens that spread communicable diseases Identification of communicable diseases Treating bacterial infections with antibiotics Evolution of antibiotic resistance in bacteria Vaccinations Genetic terminology Genetic diagrams Structures involved in a nervous reaction A Reflex arc Risk factors Chemical and physical defences Osmosis and percentage gain and loss Fossils as evidence for human evolution In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for assistance sheets when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as genetic diagrams and evolution by natural selection. Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 1 exam.
Kidney failure and its potential treatments (OCR A-level Biology A)
GJHeducationGJHeducation

Kidney failure and its potential treatments (OCR A-level Biology A)

(0)
This is a fully-resourced lesson that covers the details of specification point 5.1.2 (e) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the effects of kidney failure and its potential treatments. This lesson consists of an engaging PowerPoint (55 slides) and associated differentiated worksheets that look at the diagnosis of a number of different kidney-related conditions and the potential treatments for kidney failure. This lesson is designed to get the students to take on the numerous roles of a doctor who works in the renal ward which include testing, diagnosis and treatment. Having obtained measurements by GFR and results by taking urine samples, hey are challenged to use their knowledge of the function of the kidney to study urine samples (and the accompanying GP’s notes) to diagnose one of four conditions. They then have to write a letter to the patient to explain how they made this diagnosis, again focusing on their knowledge of the structure and functions of the Bowman’s capsule and PCT. The rest of the lesson focuses on haemodialysis, peritoneal dialysis and kidney transplant. There are regular progress checks throughout the lesson so that students can assess their understanding and there are a number of homework activities included in the lesson. This lesson is designed for A-level students who are studying the OCR A-level Biology specification and ties in nicely with the other uploaded lessons on this organ which include the structure and function of the nephron, ultrafiltration, selective reabsorption and osmoregulation.
Module 6.1.3:  Manipulating genomes (OCR A-level Biology A)
GJHeducationGJHeducation

Module 6.1.3: Manipulating genomes (OCR A-level Biology A)

6 Resources
This bundle of 6 lessons covers a lot of the content in Module 6.1.3 (Manipulating genomes) of the OCR A-level Biology A specification and includes an end of module revision lesson. The topics covered within these lessons include: The principles of DNA sequencing The development of new DNA sequencing techniques The principles of the PCR and its applications The principles and uses of electrophoresis to separate DNA fragments and proteins The principles and techniques of genetic engineering 6.1.3 REVISION All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
Module 2.1.3: Nucleotides and nucleic acids (OCR A-level Biology A)
GJHeducationGJHeducation

Module 2.1.3: Nucleotides and nucleic acids (OCR A-level Biology A)

8 Resources
Every one of the lessons included in this bundle is detailed, engaging and fully-resourced and has been written to cover the content as detailed in module 2.1.3 of the OCR A-level Biology A specification. The wide range of activities will maintain engagement whilst supporting the explanations of the content to allow the students to build a deep understanding of Nucleotides and nucleic acids. Lessons which cover the following specification points are included in this bundle: (a) The structure of a nucleotide (b) The synthesis and breakdown of polynucleotides © The structure of phosphorylated nucleotides (d) (i) The structure of DNA (e) Semi-conservative DNA replication (f) The genetic code (g) The structure of RNA and the synthesis of polypeptides through transcription and translation A revision lesson on the content of this module has also been included in this bundle. If you would like to see the quality of the lessons, download the nucleotides and transcription lessons as these have been uploaded for free
Meiosis (AQA A-level Biology)
GJHeducationGJHeducation

Meiosis (AQA A-level Biology)

(0)
This fully-resourced lesson focuses on the events of meiosis which specifically contribute to genetic variation. The detailed PowerPoint and accompanying resources have been designed to cover the 4th and final part of point 4.3 of the AQA A-level Biology specification which states that students should be able to describe how meiosis produces daughter cells that are genetically different from each other. In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations. Due to the detail of this lesson, it is estimated that this will take about 2 hours of A-level teaching time to deliver
Mitotic index (AQA A-level biology)
GJHeducationGJHeducation

Mitotic index (AQA A-level biology)

(0)
This lesson explains how to calculate the mitotic index and then explores what a high value may indicate about the tissue that was sampled. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 3 which have been planned to cover the content of point 2.2 of the AQA A-level biology specification. As shown in the cover image, the lesson begins with a bit of fun, as the students are challenged to use three clues to identify three uses of the term index in biology. They’ll learn that the index of diversity is covered in a topic 4 lesson and that this lesson focuses on the mitotic index. The students are challenged on their knowledge of the mitotic cell cycle throughout the lesson and one of these questions is used to introduce the meaning of the index and the formula. A series of exam-style questions challenge them to apply their understanding, and the answers are embedded into the PowerPoint to enable the students to assess their progress. Moving forwards, the different meanings of high values are considered, including growing and repairing tissues, and then to explain how an elevated mitotic index can indicate that cell division has become uncontrolled. This prepares students for the next lesson where tumour formation and cancer will be covered.
Topic 1: Lifestyle, health and risk (Edexcel A-level Biology A)
GJHeducationGJHeducation

Topic 1: Lifestyle, health and risk (Edexcel A-level Biology A)

10 Resources
As the 1st topic on the Pearson Edexcel A-level Biology A (Salters Nuffield) course, the Lifestyle, health and risk topic is extremely important to introduce the students to the detail needed for success in this subject. Extensive planning has gone into all 10 lessons included in this bundle to motivate and engage the students whilst covering the following specification points: The importance of water The structure and function of blood vessels The cardiac cycle and the relationship between the structure and operation of the heart to its function The course of events that lead to atherosclerosis The blood clotting process The differences between monosaccharides, disaccharides and polysaccharides The structure and role of the monosaccharides Understand how monosaccharides join to form disaccharides and polysaccharides through condensation reactions and are split through hydrolysis reactions The relationship between the structure and roles of the polysaccharides The synthesis of a triglyceride by the formation of ester bonds between glycerol and fatty acids The difference between saturated and unsaturated lipids The PowerPoints and accompanying resources contain a wide variety of tasks which include exam-style questions with mark schemes, guided discussion points and quick quiz competitions.