Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Temperature control in endotherms (OCR A-level Biology)
GJHeducationGJHeducation

Temperature control in endotherms (OCR A-level Biology)

(0)
This is a highly engaging and detailed lesson which looks at the physiological and behavioural responses involved in temperature control in endotherms and therefore covers specification point 5.1.1 (d) of the OCR A-level Biology A specification. A wide range of activities have been written into the PowerPoint and accompanying worksheets so that students remain motivated throughout and take a genuine interest in the content. Understanding checks allow the students to assess their progress whilst the prior knowledge checks on topics such as enzymes and denaturation demonstrate the importance of being able to make connections and links between topics from across the specification. In addition to these checks, quiz competitions like HAVE an EFFECT which is shown in the cover image are used to introduce key terms and values in a fun and memorable way. The lesson begins by introducing the key term, endotherm, and challenging students to use their prior knowledge and understanding of terminology to suggest what this reveals about an organism. Moving forwards, students will learn how the heat generated by metabolic reactions is used as a source of internal heat. The main part of the lesson focuses on thermoregulation in humans (mammals) and time is taken to focus on the key components, namely the sensory receptors, the thermoregulatory centre in the hypothalamus and the responses brought about by the skin. The important details of why the transfer of heat energy between the body and the environment actually leads to a decrease in temperature are explored and discussed at length to ensure understanding is complete. Students are challenged to write a detailed description of how the body detects and responds to a fall in body temperature and this task is differentiated for those students who need some extra assistance. The peripheral thermoreceptors are introduced and this leads into the final section of the lesson that considers behavioural responses in humans and other animals. This lesson has been designed for A-level students studying the OCR A-level Biology A course
Mitosis and its significance (OCR A-level Biology A)
GJHeducationGJHeducation

Mitosis and its significance (OCR A-level Biology A)

(0)
This fully-resourced lesson describes the main stages of mitosis and explains the significance of this type of nuclear division in life cycles. The PowerPoint and accompanying resources have been designed to cover points 2.1.6 (c & e) of the OCR A-level Biology A specification and make direct links to the previous lesson which covered the cell cycle Depending upon the exam board taken at GCSE, the knowledge and understanding of mitosis will differ considerably between students and there may be a number of misconceptions. This was considered at all points during the planning of the lesson so that existing errors are addressed and key points are emphasised throughout. Their understanding of interphase is challenged at the start of the lesson to ensure that they realise that it is identical pairs of sister chromatids that enter the M phase. The main part of the lesson focuses on prophase, metaphase, anaphase and telophase and describes how the chromosomes behave in these stages. There is a focus on the centrioles and the spindle fibres that they produce which contract to drag one chromatid from each pair in opposite directions to the poles of the cell. The remainder of the lesson is a series of understanding and application questions where students have to identify the various roles of mitosis in living organisms as well as tackling a Maths in a Biology context question. The lesson concludes with a final quiz round of MITOSIS SNAP where they only shout out this word when a match is seen between the name of a phase, an event and a picture.
Three domain classification (OCR A-level Biology)
GJHeducationGJHeducation

Three domain classification (OCR A-level Biology)

(0)
This lesson describes how the recent use of similarities in biological molecules and other genetic evidence has led to new classification systems. The PowerPoint and accompanying resources have been designed to cover point 4.2.2 [c] (i) of the OCR A-level Biology A specification and focuses on the introduction of the three-domain system following Carl Woese’s detailed study of the ribosomal RNA gene. The lesson begins with an introduction of Woese and goes on to describe how he is most famous for his definition of the Archaea as a new domain of life. Students were introduced to domains and the other classification taxa in a previous lesson, so their recall of this knowledge is continually tested and built upon as details are added. Students will discover the key differences between Archaea and Bacteria that led to the splitting of the prokaryotae kingdom and the addition of this higher classification rank. Moving forwards, the rest of the lesson considers other molecules that can be compared between species for classification purposes and the primary structure of cytochrome is described and discussed. At this point in the lesson, the students are also tested on their knowledge of the nature of the genetic code and have to explain how mutations to DNA can also be used for comparative purposes.
Topics 17 & 18: Selection, evolution, biodiversity & classification (CIE A-level Biology)
GJHeducationGJHeducation

Topics 17 & 18: Selection, evolution, biodiversity & classification (CIE A-level Biology)

16 Resources
The topics of selection, evolution, biodiversity, classification and conservation are key concepts in Biology, that are regularly assessed in the exams, but are not always that well understood by the students. With this at the forefront of the lesson design, these 16 lesson PowerPoints and their accompanying resources have been intricately planned to cover the detailed content of topics 17 & 18 of the CIE A-level Biology specification through the use of a wide range of tasks to engage and motivate the students. There are plenty of opportunities for the students to assess their current understanding through the completion of exam-style questions and also to check on their prior knowledge by making links to earlier topics. The following specification points are covered by these lessons: Topic 17.1: Variation The differences between continuous and discontinuous variation Using the t-test to compare the variation of two different populations The importance of genetic variation in selection Topic 17.2: Natural and artificial selection Natural selection Explain how environmental factors can act as stabilising, disruptive and directional forces of natural selection Explain how the founder effect and genetic drift may affect allele frequencies in populations Use the Hardy-Weinberg principle Topic 17.3: Evolution The molecular evidence that reveals similarities between closely related organisms Explain how speciation may occur Topic 18.1: Biodiversity Define the terms species, ecosystem and niche Explain that biodiversity is considered at three levels Explain the importance of random sampling in determining the biodiversity of an area Use suitable methods to assess the distribution and abundance of organisms in a local area Use the Spearman’s rank correlation to analyse relationships between data Use Simpson’s index of diversity Topic 18.2: Classification The classification of species into taxonomic hierarchy The characteristic features of the three domains The characteristic features of the kingdoms Explain why viruses are not included in the three domain classification Topic 18.3: Conservation The reasons for the need to maintain biodiversity Methods of protecting endangered species The roles of organisations like the WWF and CITES in local and global conservation If you would like to sample the quality of the lessons that are included in this bundle then download the following as these have been shared for free: Continuous and discontinuous variation Molecular evidence & evolution Spearman’s rank correlation WWF, CITES and conservation It is estimated that it will take up to 2 months of A-level Biology teaching time to cover the detail included in these lessons
Maths in A-level Biology (CIE A-level Biology)
GJHeducationGJHeducation

Maths in A-level Biology (CIE A-level Biology)

7 Resources
Without doubt, the CIE A-level Biology specification contains a lot of maths calculations and every year, there are a large number of exam questions that require the application of a range of mathematical skills. Therefore, a clear understanding of how and when to apply these skills is closely related to success on this course and the following calculations are covered by the 7 lessons that are included in this bundle: Using the eyepiece graticule and stage micrometer to measure cells and be familiar with units Calculating actual sizes of specimens from drawings, photomicrographs and electron micrographs Using the chi-squared test to determine significance between the observed and expected results of a genetic cross Use the t-test to compare the variation of two populations Using the Hardy Weinberg principle to calculate allele, genotype and phenotype frequencies in populations Use Spearman’s rank correlation to analyse relationships between the distribution and abundance of species and abiotic or biotic factors Using Simpson’s index of diversity to calculate the biodiversity of a habitat All of the lessons contain step by step guides that walk the students through the application of the formulae and there are lots of worked examples and exam-style questions for the students to use to assess understanding
Plasma membrane (WJEC A-level Biology)
GJHeducationGJHeducation

Plasma membrane (WJEC A-level Biology)

(0)
This lesson describes the principle components of the plasma membrane, focusing on the phospholipid bilayer and membrane proteins. The detailed PowerPoint and accompanying worksheets have been designed to cover the detail in point (a) of AS unit 1, topic 3 of the WJEC A-level Biology specification and clear links are made to Singer and Nicholson’s fluid mosaic model The fluid mosaic model is introduced at the start so that it can be referenced at appropriate points throughout the lesson. Students were introduced to phospholipids in topic 1 and so an initial task challenges them to spot the errors in a passage describing the structure and properties of this molecule. This reminds them of the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are used and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Fick's Law & gas exchange surfaces (Edexcel Int. A-level Biology)

(0)
This lesson describes how Fick’s law of diffusion is governed by the three main properties of gas exchange surfaces in living organisms. The PowerPoint and accompanying worksheets have been designed to cover points 2.1 (i & ii) of the Edexcel International A-level Biology specification and there is a particular focus on the relationship between the size of an organism or structure and its surface to volume ratio. Adolf Fick is briefly introduced at the start of the lesson and the students will learn that his law of diffusion governs the diffusion of a gas across a membrane and is dependent on three properties. The students are likely to know that surface area is one of these properties but although they may have been introduced to the surface area to volume ratio at iGCSE, their understanding of its relevance tends to be mixed. Therefore, real life examples are included throughout the lesson that emphasise the importance of this ratio in order to increase the relevance. A lot of students worry about the maths calculations that are associated with this topic so a step by step guide is included at the start of the lesson to walk them through the calculation of the surface area, the volume and then the ratio. Through worked examples and understanding checks, SA/V ratios are calculated for cubes of increasing side length and living organisms of different size. These comparative values will enable the students to conclude that the larger the organism or structure, the lower the surface area to volume ratio. A differentiated task is then used to challenge the students to explain the relationship between the ratio and the metabolic demands of an organism and this leads into the next part of the lesson, where the adaptations of a human to increase the ratio at the gas exchange surface is covered. The students will calculate the SA/V ratio of a human alveolus (using the surface area and volume formulae for a sphere) and will see the significant increase that results from the folding of the membranes. The remainder of the lesson introduces concentration difference and thickness of membrane as the other two properties in Fick’s law of diffusion and students are reminded that the maintenance of a steep concentration gradient and a reduction in the diffusion distance are critical for this transport mechanism. This lesson has been specifically planned to prepare students for the next lesson which describes how the structure of the mammalian lung is adapted for rapid gas exchange (specification point 2.1 [iii])
AS Unit 2 Topic 1: All organisms are related through their evolutionary history (WJEC A-level Biology)
GJHeducationGJHeducation

AS Unit 2 Topic 1: All organisms are related through their evolutionary history (WJEC A-level Biology)

5 Resources
All 5 lessons in this lesson bundle are highly detailed to cover the specification points shown below that are found in AS unit 2, topic 1 of the WJEC A-level Biology specification: The classification of organisms into groups based on their evolutionary relationships The need for classification The three-domain classification system The characteristic features of the five kingdoms of living organisms The use of physical features and biochemical methods to assess the relatedness of organisms The concept of species The use of the binomial naming system Biodiversity as the variety of organisms found within a specified geographic region Biodiversity can be assessed in a habitat using Simpson’s index of diversity Biodiversity can be assessed within a species at a genetic level Biodiversity can be assessed at a molecular level using DNA fingerprinting Biodiversity has been generated through natural selection Anatomical, physiological and behavioural adaptations As well as the A-level Biology content within the slides, current understanding and prior knowledge checks in the form of exam-style questions, differentiated tasks and quiz competitions are included throughout to allow the students to assess their progress If you would like to sample the quality of the lessons included in this bundle, then download the classification, species and the binomial naming system lesson as this has been shared for free
In situ conservation (Edexcel A-level Biology B)
GJHeducationGJHeducation

In situ conservation (Edexcel A-level Biology B)

(0)
This lesson describes the principles of in situ conservation and considers the benefits as well as the issues that surround this method. The PowerPoint and accompanying resources are part of the first lesson in a series of 2 which have been designed to cover the content of point 3.3 (iii) of the Edexcel A-level Biology B specification. Hours of research have gone into the planning of this lesson to source interesting examples to increase the relevance of the biological content, and these include the Lizard National Nature Reserve in Cornwall, the Lake Télé Community reserve in the Republic of Congo and the marine conservation zone in the waters surrounding Tristan da Cunha. Students will learn how this form of active management conserves habitats and species in their natural environment, with the aim of minimising human impact whilst maintaining biodiversity. The main issues surrounding this method are discussed, including the fact that the impact of this conservation may not be significant if the population has lost much of its genetic diversity and that despite the management, the conditions that caused the species to become endangered may still be present. A number of quick quiz competitions are interspersed throughout the lesson to introduce key terms and values in a fun and memorable way and one of these challenges them to use their knowledge of famous scientists to reveal the surname, Fossey. Dian Fossey was an American conservationist and her years of study of the mountain gorillas is briefly discussed along with the final issue that wildlife reserves can draw poachers and tourists to the area, potentially disturbing the natural habitat.
Maintenance of biodiversity (Edexcel A-level Biology B)
GJHeducationGJHeducation

Maintenance of biodiversity (Edexcel A-level Biology B)

(0)
This lesson describes the ethical and economic reasons for the maintenance of biodiversity. The engaging PowerPoint and accompanying worksheets are filled with real-life biological examples and have been designed to cover point 3.3 (ii) of the Edexcel A-level Biology B specification. Many hours of research have gone into the planning of the lesson so that interesting examples are included to increase the relevance of the multitude of reasons to maintain biodiversity. These include the gray wolves and beavers of Yellowstone National Park and the Za boabab in the Madagascar rainforests as examples of keystone species. Students will learn that these species have a disproportionate effect on their environment relative to their abundance and exam-style questions and guided discussion periods are used to challenge them to explain their effect on other species in the habitat. The latest A-level Biology exams have a heavy mathematical content and this is reflected in this lesson as students are challenged to complete a range of calculations to manipulate data to support their biological-based answers. All of the exam questions that are included throughout the lesson have mark schemes embedded into the PowerPoint to allow the students to assess their progress. Moving fowards, the economic ans aesthetic reasons to maintain biodiversity are considered, and there is a focus on the soil depletion that occurs when a continuous monoculture is used. The 1 Billion tree scheme that began in New Zealand in 2018 is introduced and the reasons that some groups of people are objecting to what they consider to be a pine monoculture are discussed. Students will recognise that the clear felling of the trees dramatically changes the landscape and that the increased runoff that results can have catastrophic affects for both aquatic life and for humans with floods. A number of quiz competitions are included in the lesson to introduce key terms in a fun and memorable way and some of the worksheets have been differentiated to allow students of differing abilities to access the work
AS Unit 2 Topic 3: Adaptations for transport (WJEC A-level Biology)
GJHeducationGJHeducation

AS Unit 2 Topic 3: Adaptations for transport (WJEC A-level Biology)

8 Resources
All of the 8 lessons that are included in this bundle are fully-resourced and contain a wide range of tasks which cover the content of the following specification points in topic 3 of AS unit 2 as detailed in the WJEC A-level Biology specification: a: The double circulatory system of a mammal b: The mammalian circulatory system including the structure and function of the heart and blood vessels c: The cardiac cycle and the role of the SAN and Purkyne fibres h: The formation of tissue fluid and its importance as the link between blood and cells j: The absorption of water by the root k: The movement of water through the root by the apoplast, symplast and vacuolar pathways l: The structure and role of the endodermis m: The detailed structure of the xylem n: The movement of water from root to leaf including the transpiration stream and the cohesion-tension theory q: The detailed structure of the phloem If you would like to sample the quality of the lessons included in this bundle, then download the double circulatory system and xylem and phloem lessons as these have been uploaded for free
Homeostasis, negative & positive feedback (WJEC A-level Biology)
GJHeducationGJHeducation

Homeostasis, negative & positive feedback (WJEC A-level Biology)

(0)
This lesson describes the concept of homeostasis using negative feedback control and also describes the role of positive feedback. The PowerPoint and accompanying resources have been designed to cover specification points (a & b) in topic 7 of A2 unit 3 of the WJEC A-level Biology specification and explains how this feedback control maintains systems within narrow limits but has also been planned to provide important details for upcoming topics such as osmoregulation. The normal ranges for blood glucose concentration, blood pH and body temperature are introduced at the start of the lesson to allow students to recognise that these aspects have to be maintained within narrow limits. A series of exam-style questions then challenge their recall of knowledge from AS units 1 & 2 and the earlier topics in A2 unit 3 as they have to explain why it’s important that each of these aspects is maintained within these limits. The students were introduced to homeostasis at GCSE, so this process is revisited and discussed, to ensure that students are able to recall that this is the maintenance of a state of dynamic equilibrium. A quick quiz competition is used to reveal negative feedback as a key term and students will learn how this form of control reverses the original change and biological examples are used to emphasise the importance of this system for restoring levels to the limits (and the optimum). The remainder of the lesson explains how positive feedback differs from negative feedback as it increases the original change and the role of oxytocin in birth and the movement of sodium ions into a neurone are used to exemplify the action of this control system.
Chi squared test (WJEC A-level Biology)
GJHeducationGJHeducation

Chi squared test (WJEC A-level Biology)

(0)
This lesson guides students through the use of a chi-squared test to determine the significance of the difference between observed and expected results. It is fully-resourced with a detailed PowerPoint and differentiated worksheets that have been designed to cover point (d) in topic 3 of A2 unit 4 of the WJEC A-level Biology specification The lesson includes a step-by-step guide to demonstrates how to carry out the test in small chunks. At each step, time is taken to explain any parts which could cause confusion and helpful hints are provided to increase the likelihood of success in exam questions on this topic. Students will understand how to use the phenotypic ratio to calculate the expected numbers and then how to find the critical value in order to compare it against the chi-squared value. A worked example is used to show the working which will be required to access the marks and then the main task challenges the students to apply their knowledge to a series of questions of increasing difficulty. This lesson has been specifically designed to tie in with the previous lessons in this topic as there are regular references to dihybrid inheritance as well as to topics in the AS units like meiosis
Genetic variation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Genetic variation (Edexcel A-level Biology B)

(0)
This fully-resourced lesson describes how mutations, the events of meiosis and random fertilisation result in genetic variation. The engaging PowerPoint and accompanying resources have been primarily designed to cover points 8.1 (i) & (ii) of the Edexcel A-level Biology B specification but also includes activities to challenge the students on previous concepts in topics 1 and 2. The students begin the lesson by having to identify phenotype and species from their respective definitions so that a discussion can be encouraged where they will recognise that phenotypic variation within a species is due to both genetic and environmental factors although this lesson only focuses on the genetic aspect. A range of activities, which include exam-style questions and quick quiz rounds, are used to challenge the students on their knowledge and understanding of substitution mutations, deletions, insertions, the genetic code, crossing over and independent assortment. Moving forwards, the concept of multiple alleles is introduced and students will learn how the presence of more than 2 alleles at a locus increases the number of phenotypic variants. The final section of the lesson focuses on the production of haploid gametes by meiosis and discusses how the random fertilisation of these gametes during sexual reproduction further increases variation.
Cell membrane structure (OCR A-level Biology)
GJHeducationGJHeducation

Cell membrane structure (OCR A-level Biology)

(0)
This detailed lesson describes the fluid mosaic model of membrane structure and also describes the roles of its components. The detailed and engaging PowerPoint and accompanying worksheets have been designed to cover specification point 2.1.5 (b) of the OCR A-level Biology A specification and clear links are made to related topics such as the binding of peptide hormones The fluid mosaic model is introduced at the start of the lesson so that it can be referenced at appropriate points throughout the lesson. Students were introduced to phospholipids in module 2.1.2 and an initial task challenges them to spot the errors in a passage describing the structure and properties of this molecule. This reminds them of the bilayer arrangement, with the hydrophilic phosphate heads protruding outwards into the aqueous solutions on the inside and the outside of the cell. In a link to some upcoming lessons on the transport mechanisms, the students will learn that only small, non-polar molecules can move by simple diffusion and that this is through the tails of the bilayer. This introduces the need for transmembrane proteins to allow large or polar molecules to move into the cell by facilitated diffusion and active transport. Proteins that act as receptors as also introduced and an opportunity is taken to make a link to an upcoming topic so that students can understand how hormones or drugs will bind to target cells in this way. Moving forwards, the structure of cholesterol is covered and students will learn that this hydrophobic molecule sits in the middle of the tails and therefore acts to regulate membrane fluidity. The final part of the lesson challenges the students to apply their newly-acquired knowledge to a series of questions where they have to explain why proteins may have moved when two cells are used and to suggest why there is a larger proportion of these proteins in the inner mitochondrial membrane than the outer membrane.
Topic 4: Cell membranes and transport (CIE A-level Biology)
GJHeducationGJHeducation

Topic 4: Cell membranes and transport (CIE A-level Biology)

4 Resources
All 4 of the lessons that are included in this bundle are fully-resourced and contain a wide range of activities that will motivate and engage the students whilst covering the content as detailed in topic 4 of the CIE A-level Biology specification (Cell membranes and transport). Exam-style questions which check on current and prior understanding, differentiated tasks, discussion points and quick quiz competitions cover the following specification points: The fluid mosaic model of membrane structure The roles of phospholipids, cholesterol, glycoproteins and proteins The roles of channel and carrier proteins Simple diffusion Facilitated diffusion Active transport, endocytosis and exocytosis Osmosis and the effect of the movement of water on animal and plant cells If you would like to sample the quality of these lessons, download the active transport lesson as this has been uploaded for free
Topic 11: Immunity (CIE A-level Biology)
GJHeducationGJHeducation

Topic 11: Immunity (CIE A-level Biology)

5 Resources
The 5 lessons included in this bundle are all fully-resourced and contain a wide range of activities that will motivate and engage the students whilst covering the content as detailed in topic 11 of the CIE A-level Biology specification (Immunity). Exam-style questions which check on current and prior understanding, differentiated tasks, discussion points and quick quiz competitions cover the following specification points: Phagocytes have their origin in bone marrow Phagocytosis The modes of action of B and T lymphocytes The meaning of term immune response, with reference to the terms antigen, self and non-self The role of memory cells in long term immunity Autoimmune diseases The relationship between the structure and function of antibodies Distinguish between active and passive immunity The use of vaccinations to control disease If you would like to sample the quality of these lessons, download the phagocytes and phagocytosis lesson as this has been uploaded for free
Hardy-Weinberg equation (Edexcel A-level Biology B)
GJHeducationGJHeducation

Hardy-Weinberg equation (Edexcel A-level Biology B)

(0)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equation to monitor changes in allele frequencies in a population. The detailed PowerPoint and differentiated practice questions worksheets have been designed to cover point 8.3 (iv) of the Edexcel A-level Biology B specification The lesson begins with a focus on the equation to ensure that the students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged
Natural selection and adaptation (Edexcel A-level Biology A)
GJHeducationGJHeducation

Natural selection and adaptation (Edexcel A-level Biology A)

(0)
This fully-resourced lesson describes how natural selection leads to behavioural, anatomical and physiological adaptations. The PowerPoint and accompanying resources have been designed to cover specification points 4.3 & 4.4 of the Pearson Edexcel A-level Biology A specification President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of evolution through natural selection. The main task of the lesson challenges the students to form a description that explains how this strain of bacteria developed resistance to methicillin to enable them to see the principles of natural selection. This can then be used when describing how the anatomy of the modern-day giraffe has evolved over time. The concept of convergent evolution is introduced and links are made to the need for modern classification techniques as this is covered later in topic 4. Moving forwards, students will understand how natural selection leads to adaptations and a quick quiz competition introduces the different types of adaptation and a series of tasks are used to ensure that the students can distinguish between anatomical, behavioural and physiological adaptations. The Marram grass is used to test their understanding further, before a step by step guide describes how the lignified cells prevent a loss of turgidity. Moving forwards, the students are challenged to explain how the other adaptations of this grass help it to survive in its environment. A series of exam-style questions on the Mangrove family will challenge them to make links to other topics such as osmosis and the mark schemes are displayed to allow them to assess their understanding. The final part of the lesson focuses on the adaptations of the anteater but this time links are made to the upcoming topic of taxonomy so that students are prepared for this lesson on species and classification hierarchy. Due to the extensiveness of this lesson and the detail contained within the resources, it is estimated that it will take in excess of 2 hours of allocated A-level teaching time to deliver this lesson.
Topic 17.2: Natural and artificial selection (CIE A-level Biology)
GJHeducationGJHeducation

Topic 17.2: Natural and artificial selection (CIE A-level Biology)

4 Resources
This bundle of detailed lessons covers points (a), (b), © & (d) of topic 17.2 (Natural and artificial selection) of the CIE A-level Biology specification. All of the lesson PowerPoints and accompanying resources contain a wide range of activities including exam-style questions, discussion periods and quick quiz competitions, which will engage and motivate the students whilst covering the detail of each sub-topic. As a result of these lessons, students will understand how random mutations result in variation within species which allows selection pressures to act on the individuals and conveying an advantage to some. The result is an increase in the frequency of some alleles and this change can be calculated using the Hardy-Weinberg principle