Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1121k+Views

1928k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Cell signalling (OCR A-level Biology A)
GJHeducationGJHeducation

Cell signalling (OCR A-level Biology A)

(1)
This lesson describes how communication occurs between cells by cell signalling. The PowerPoint and accompanying resource have been designed to cover point 5.1.1 (b) of the OCR A-level Biology A specification and focuses on the use of the nervous system for communication between the CNS and effectors and the release of hormones to bring about responses. As this is one of the first lessons to be delivered in module 5, this lesson has been specifically planned to prepare students for the upcoming topics of neuronal and hormonal communication. Students begin by learning that cell signalling governs the basic activities of cells and coordinates multiple cell actions. Moving forwards, the next part of the lesson focuses on the nervous system and students will learn that an electrical impulse will be conducted on a somatic or an autonomic motor neurone depending upon the type of muscle to be stimulated. This provides some introductory information for modules 5.1.3 and 5.1.5. The remainder of the lesson describes how the hormones that are secreted by the cells of endocrine glands allow communication with target cells and the different actions of peptide and steroid hormones is considered.
Principles of DNA sequencing (OCR A-level Biology)
GJHeducationGJHeducation

Principles of DNA sequencing (OCR A-level Biology)

(0)
This detailed lesson describes the principles of DNA sequencing and has been designed to cover the first part of point 6.1.3 (a) of the OCR A-level Biology A specification. Fred Sanger’s chain termination method is used as the example to guide the students through the details of each step. The lesson begins with a focus on the common ingredients of the process such as DNA polymerase, DNA nucleotides and primers. Links are made to module 2.1.3 where nucleic acids were initially met through a series of prior knowledge check questions. Time is then taken to explain why these short lengths of synthesised nucleotides are necessary and this will support students when primers are met in the PCR and genetic engineering. Moving forwards, students will recognise how the modification to the nucleotide means that the chain terminates once a modified nucleotide is added into the sequence and that these have been radioactively labelled. Gel electrophoresis is introduced and an outline of the process given to provide knowledge to build on when this is encountered later in the module. A series of exam-style questions allow students to assess their understanding of this potentially difficult topic before students are encouraged to consider the limitations of the method so they are prepared to meet the new methods in upcoming lessons. A number of quiz competitions run throughout the lesson to maintain engagement and to introduce terms and values in a memorable way
AQA GCSE Science Unit B2 REVISION
GJHeducationGJHeducation

AQA GCSE Science Unit B2 REVISION

(1)
An engaging lesson presentation (60 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within unit B2 (Organisation) of the AQA GCSE Combined Science specification (specification point 4.2) The topics that are tested within the lesson include: Principles of organisation The human digestive system The heart and blood vessels Blood Coronary heart disease The effect of lifestyle on some non-communicable diseases Plant organ systems Students will be engaged through the numerous activities including quiz rounds like “SPOT the SUBSTANCE" and “Where’s LENNY” whilst crucially being able to recognise those areas which need further attention
AQA GCSE Combined Science REVISION LESSONS
GJHeducationGJHeducation

AQA GCSE Combined Science REVISION LESSONS

20 Resources
This bundle of 20 fully-resourced lessons have been designed to allow students who are studying the AQA GCSE Combined Science course to assess their understanding of the topics found within the following units of the specification: B1: Cell Biology B2: Organisation B4: Bioenergetics B5: Homeostasis and response B6: Inheritance, variation and evolution B7: Ecology C1: Atomic structure and the periodic table C2: Bonding, structure and properties of matter C3: Quantitative chemistry C4: Chemical changes C5: Energy changes C6: The rate and extent of chemical change C7: Organic chemistry C8: Chemical analysis C9: Chemistry of the atmosphere P1: Energy P2: Electricity P4: Atomic structure P5: Forces P6: Waves These lessons use a range of exam questions, understanding checks, quick tasks and quiz competitions to engage and motivate the students
OCR GCSE Biology Modules B1-B3 REVISION
GJHeducationGJHeducation

OCR GCSE Biology Modules B1-B3 REVISION

(0)
A fully resourced revision lesson that uses a combination of exam questions, understanding checks, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within modules B1, B2 and B3 of the OCR Gateway A GCSE Biology specification as will be covered in Biology paper 1 The topics that are tested within the lesson include: Cell structures What happens in cells Respiration Photosynthesis Supplying the cell The challenge of size The nervous system The endocrine system Maintaining internal environments Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require further attention
Maths in Science
GJHeducationGJHeducation

Maths in Science

4 Resources
This bundle of 4 lesson presentations and associated resources cover a lot of the mathematical skills that can be tested in Science. Since the move to the new GCSE specifications, the mathematical element has increased significantly and these lessons act to guide students through these skills. Students are shown how to convert between units, rearrange to change the subject of the formula and to use significant figures and standard form.
OCR Gateway A GCSE Biology B4 (Community-level systems) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Biology B4 (Community-level systems) REVISION

(0)
This engaging lesson presentation (58 slides) and associated worksheets uses exam questions with displayed mark schemes, quick tasks and quiz competitions to enable students to assess their understanding of the topics found within module B4 of the OCR Gateway A GCSE Biology specification. The topics which are specifically tested within the lesson include: Ecosystems, Competition and interdependence, Pyramids of biomass, Efficiency of biomass transfer, The carbon cycle and Decomposers Students will enjoy the competitions such as "Number CRAZY" and "Take the HOTSEAT" whilst crucially being able to recognise those areas which need their further attention
Structure of DNA - GCSE
GJHeducationGJHeducation

Structure of DNA - GCSE

(1)
A fully-resourced lesson which looks at the structure of DNA in the detail which is required at GCSE level (14 - 16 year olds in the UK). The lesson includes an engaging lesson presentation (35 slides) and associated worksheets. The main aim of the lesson is to ensure that students recognise key terminology that comes with this topic such as nucleotide and (nitrogenous) bases. Engaging tasks have been written into the lesson, in order to maintain the motivation, such as when students are introduced to complimentary base pairing through a version of the gameshow “Take me Out”. Additional knowledge is provided at appropriate times in the lesson to stretch and challenge the more able. There are regular progress checks throughout the lesson so that students can assess their understanding of the structure. As stated above, this lesson has been written for GCSE students but could be used with younger students and also with A-level students as a means of a recap before they learn about this in greater detail.
Edexcel GCSE Biology Topic 2 REVISION (Cells and control)
GJHeducationGJHeducation

Edexcel GCSE Biology Topic 2 REVISION (Cells and control)

(1)
This is an engaging and fully-resourced revision lesson which uses a range of exam questions, understanding checks, quick tasks and quiz competitions to enable students to assess their understanding of the content within topic 2 (Cells and control) of the Edexcel GCSE Biology 9-1 specification. The specification points that are covered in this revision lesson include: Describe mitosis as part of the cell cycle, including the stages interphase, prophase, metaphase, anaphase and telophase and cytokinesis Describe the importance of mitosis in growth, repair and asexual reproduction Describe the division of a cell by mitosis as the production of two daughter cells, each with identical sets of chromosomes in the nucleus to the parent cell, and that this results in the formation of two genetically identical diploid body cells Explain the importance of cell differentiation in the development of specialised cells Discuss the potential benefits and risks associated with the use of stem cells in medicine Describe the structures and functions of the brain including the cerebellum, cerebral hemispheres and medulla oblongata Explain how the difficulties of accessing brain tissue inside the skull can be overcome by using CT scanning and PET scanning to investigate brain function Explain the structure and function of sensory receptors, sensory neurones, relay neurones in the CNS, motor neurones and synapses in the transmission of electrical impulses, including the axon, dendron, myelin sheath and the role of neurotransmitters Explain the structure and function of the eye as a sensory receptor including the role of the cornea, lens and iris Describe defects of the eye including cataracts, longsightedness and short-sightedness Explain how long-sightedness and short-sightedness can be corrected The students will thoroughly enjoy the range of activities, which include quiz competitions such as "Can I have a P please BOB” where they have to recognise the different phases of mitosis from pictures or descriptions. The activities will crucially enable the students to determine which areas of topic 2 will need their further attention. This lesson can be used as revision resource at the end of the topic or in the lead up to mocks or the actual GCSE exams.
Topic 5.2: Respiration (AQA A-level Biology)
GJHeducationGJHeducation

Topic 5.2: Respiration (AQA A-level Biology)

7 Resources
All 7 of the lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 5.2 (Respiration) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include: Respiration produces ATP Glycolysis as the first stage of aerobic and anaerobic respiration The phosphorylation of glucose and the production and oxidation of triose phosphate The production of lactate or ethanol in anaerobic conditions The Link reaction The oxidation-reduction reactions of the Krebs cycle The synthesis of ATP by oxidative phosphorylation The chemiosmotic theory Lipids and proteins as respiratory substrates The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other sub-topics within this topic and earlier topics If you would like to see the quality of the lessons, download the anaerobic respiration and oxidative phosphorylation lessons as these have been uploaded for free
Module 2.1.3: Nucleotides and nucleic acids (OCR A-level Biology A)
GJHeducationGJHeducation

Module 2.1.3: Nucleotides and nucleic acids (OCR A-level Biology A)

8 Resources
Every one of the lessons included in this bundle is detailed, engaging and fully-resourced and has been written to cover the content as detailed in module 2.1.3 of the OCR A-level Biology A specification. The wide range of activities will maintain engagement whilst supporting the explanations of the content to allow the students to build a deep understanding of Nucleotides and nucleic acids. Lessons which cover the following specification points are included in this bundle: (a) The structure of a nucleotide (b) The synthesis and breakdown of polynucleotides © The structure of phosphorylated nucleotides (d) (i) The structure of DNA (e) Semi-conservative DNA replication (f) The genetic code (g) The structure of RNA and the synthesis of polypeptides through transcription and translation A revision lesson on the content of this module has also been included in this bundle. If you would like to see the quality of the lessons, download the nucleotides and transcription lessons as these have been uploaded for free
Diffusion
GJHeducationGJHeducation

Diffusion

(0)
This is a detailed and engaging lesson that looks at how molecules move between areas of differing concentrations by diffusion and then explores how this occurs across cell membranes and focuses on the alveoli. The lesson begins by using a step by step format to write the definition for diffusion so that key terms such as concentration gradient are understood. Students will be introduced to this as a passive process so that they can understand how active transport differs when this is met in another lesson. Progress checks are written into the lesson at regular intervals so that students can assess their understanding against a displayed answer. Moving forwards, the lesson focuses on diffusion across cell membranes and uses the example of the exchange surface of the alveoli and blood capillaries to explore the different features which act to increase the rate of diffusion. The final part of the lesson briefly looks at how the villi in the small intestine increase the rate of diffusion. This lesson has been written for GCSE aged students. If you’re looking for a lesson on this topic but for older students, then my alternative upload “Simple diffusion” will be more suitable
AQA A-level Biology Topic 3 REVISION (Organisms exchange substances with their environment)
GJHeducationGJHeducation

AQA A-level Biology Topic 3 REVISION (Organisms exchange substances with their environment)

(1)
This is a fully-resourced REVISION lesson that uses a combination of exam questions, understanding checks, differentiated tasks and quiz competitions to enable students to assess their understanding of the content found within Topic 3.3 (Organisms exchange substances with their environment) of the AQA A-level Biology specification. The sub-topics and specification points that are tested within the lesson include: Surface area to volume ratio Gas exchange Digestion and absorption Mass transport in animals Mass transport in plants Students will be engaged through the numerous quiz rounds whilst crucially being able to recognise those areas which require their further attention during general revision or during the lead up to the actual A-level terminal exams
Selective reabsorption (AQA A-level Biology)
GJHeducationGJHeducation

Selective reabsorption (AQA A-level Biology)

(1)
This lesson has been written to cover the part of specification point 6.4.3 of the AQA A-level Biology specification which states that students should be able to describe how water and glucose are reabsorbed in the proximal convoluted tubule. It has specifically been designed to build on the knowledge gained in the previous lessons on the structure of the nephron and ultrafiltration. The lesson begins by challenging the students to recall the substances that are found in the glomerular filtrate so that each of them can be considered over the course of the rest of the lesson. Moving forwards, the first of the numerous discussion points which are included in the lesson is used to get students to predict the component of the filtrate which won’t be found in the urine when they are presented with pie charts from each of these situations. Upon learning that glucose is 100% reabsorbed, along with most of the ions and some of the water, the rest of the lesson focuses on describing the relationship between the structure of the PCT and the function of selective reabsorption. Again, this section begins by encouraging the students to discuss and to predict which structures they would expect to find in a section of the kidney if the function is to reabsorb. They are given the chance to see the structure (as shown in the cover image) before each feature is broken down to explain its importance. Time is taken to look at the role of the cotransporter proteins to explain how this allows glucose, along with sodium ions, to be reabsorbed from the lumen of the PCT into the epithelial cells. The final part of the lesson focuses on urea and how the concentration of this substance increases along the tubule as a result of the reabsorption of some of the water. This lesson has been designed for students studying on the AQA-A level Biology course and ties in nicely with the other lessons from 6.4.3 as well as the other uploaded lessons from topic 6
Transcription factors (AQA A-level Biology)
GJHeducationGJHeducation

Transcription factors (AQA A-level Biology)

(0)
This fully-resourced lesson explains how the transcription of target genes can be stimulated or inhibited by transcription factors. Both the PowerPoint and the accompanying resources have been designed to cover the first part of point 8.2.2 of the AQA A-level Biology specification and links are continuously made throughout the lesson to the topic of protein synthesis which was covered in topic 4.2. The lesson begins with a recall of the meaning of the terms genome and proteome so that a discussion can begin on whether a cell wants to express every gene and produce all of the possible proteins all of the time. As the answer to this is no, the idea of transcription factors is introduced. In order to fully understand this topic, students need to recall that the role of the promoter region is to bind RNA polymerase to initiate transcription. Students will learn that the factors have a DNA-binding domain and that some also have ligand-binding domains which allow molecules like hormones to bind. Moving forwards, the students are introduced to a group of substances called DELLA proteins which inhibit plant development. The way that transcription begins once the inhibition by the proteins has been removed is similar to the action of oestrogen and students are able to use this information as a guide during the final task where they have to order the sequence of events that take place once this steroid hormone binds to its transcription factor.
Topics 8.3 & 8.4: Genome projects and gene technologies (AQA A-level Biology)
GJHeducationGJHeducation

Topics 8.3 & 8.4: Genome projects and gene technologies (AQA A-level Biology)

5 Resources
All 5 of the lessons which are included in this bundle have been written to cover the detailed content of topics 8.3 and 8.4 of the AQA A-level Biology specification. These topics can provide a series of problems for students so clear explanations are used throughout the lesson as well as regular understanding checks so any misconceptions are immediately addressed. The variety of tasks will maintain engagement whilst displayed mark schemes allow students to assess their answers and add detail where it is missing. The following specification points are covered: 8.3: Using genome projects 8.4.1: Recombinant DNA technology 8.4.3: Genetic fingerprinting If you would like to sample the quality of the lessons first, why not download the lesson on producing DNA fragments which has been uploaded for free
Water transport in the xylem (AQA A-level Biology)
GJHeducationGJHeducation

Water transport in the xylem (AQA A-level Biology)

(0)
This fully-resourced lesson describes how the structure of the xylem tissue allows water to be transported in the stem and leaves. Written for AQA A-level Biology, the engaging and detailed PowerPoint and the accompanying worksheets cover the 1st part of specification point 3.4.2 (mass transport in plants) and includes a detailed description of the cohesion-tension theory. The first part of the lesson focuses on the relationship between the structure and function of the xylem tissue. A number of quiz competitions have been included in the lesson to maintain engagement and to introduce key terms. The 1st round does just that and results in the introduction of lignin which leads into the explanation of how the impregnation of this substance in the cell walls result in the death and subsequent decay of the cell structures. Students are encouraged to discuss how the formation of this hollow tube enables the transport of water to be effective. Moving forwards, other structures such as the bordered pits are introduced and an understanding of their function is tested later in the lesson. The remainder of the lesson focuses on the transport of water in the stem and leaves by root pressure and the transpiration pull, which includes cohesion, tension and adhesion. The lesson has been designed to make links to information covered earlier in the lesson as well to topics from earlier in the specification such as cell structures and biological molecules Due to the extensiveness of this lesson, it is estimated that it will take in excess of 2/3 A-level teaching hours to cover the detail included in this lesson.
Structure of DNA & RNA (AQA A-level Biology Topic 1)
GJHeducationGJHeducation

Structure of DNA & RNA (AQA A-level Biology Topic 1)

(0)
This detailed and engaging lesson describes the structural similarities and differences between DNA and RNA. The PowerPoint and accompanying worksheet containing exam-style questions have been designed to cover point 1.5.1 of the AQA A-level Biology specification. In the first lesson of topic 1, the students were introduced to a number of monomers which included a nucleotide. In line with this, the start of the lesson challenges them to recognise the key term nucleotide when only the letters U, C and T are shown. The next part of the lesson describes the structure of a DNA nucleotide and an RNA nucleotide so that the pentose sugar and the bases adenine, cytosine and guanine can be recognised as similarities whilst deoxyribose and ribose and thymine and uracil are seen as the differences. Time is taken to discuss how a phosphodiester bond is formed between adjacent nucleotides and their prior knowledge and understanding of condensation reactions is tested through a series of questions. Students are then introduced to the purine and pyrimidine bases and this leads into the description of the double-helical structure of DNA and the hydrogen bonds between complementary bases. The final section of the lesson describes the structure of mRNA, tRNA and rRNA and students are challenged to explain why this single stranded polynucleotide is shorter than DNA In addition to the current understanding and prior knowledge checks, a number of quiz rounds have been written into the lesson to introduce key terms in a fun and memorable way and the final round acts as a final check on the structures of DNA and RNA.
Light and electron MICROSCOPES
GJHeducationGJHeducation

Light and electron MICROSCOPES

(0)
A fully-resourced lesson, designed for GCSE students which includes an engaging and informative lesson presentation (49 slides) and an image, actual and magnification question worksheet. This lesson looks at the key features of light and electron microscopes and guides students through calculating size and magnification. The lesson begins by challenging students to pick out two key terms about microscopes, magnification and resolution, from a group of Scientific words. The understanding of these two terms is critical if students will be able to compare the two types of microscopes so time is taken to go through the definitions and give examples. A number of quick quiz competitions have been written into the lesson to aid the engagement on a topic that some students may not initially consider to be that motivating. These competitions allow key terms such as micrometer and the two types of electron microscope to be introduced in an engaging way. As a result, students will know the numbers that explain why electron microscopes are more advanced than their light counterparts. The remainder of the lesson looks at the units of size which are used in calculation questions and a step by step guide is used to show the students to calculate the actual size of an object or the magnification. Progress checks have been written into this lesson at regular intervals so that students are constantly assessing their understanding.
Communicable diseases
GJHeducationGJHeducation

Communicable diseases

(0)
An engaging lesson presentation (70 slides) which covers a range of communicable diseases which are caused by each of the four pathogens and discusses how the spread of these diseases can be prevented. The lesson begins by challenging the students to make the link between communicable diseases and pathogens and ensures that they are comfortable with protoctists as this is a pathogen that a lot of them will not have met or at least known the name for. Moving forwards, a focus is given to each pathogen, looking at why they are so effective at causing disease and also looks at examples of diseases that they cause. A range of quiz competitions are used to introduce key terms and maintain engagement. The remainder of the lesson focuses on how the spread of these communicable diseases can be prevented and attempts are made to link to other topics such as contraception. Progress checks have been written into the lesson at regular intervals so that students can constantly assess their understanding and any misconceptions can be immediately addressed. This lesson has been written for GCSE students (14 - 16 year olds in the UK) but can be used with both younger and older students.