Hero image

GJHeducation's Shop

Average Rating4.50
(based on 907 reviews)

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.

2k+Uploads

1135k+Views

1938k+Downloads

A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
Ventilation and gas exchange in bony fish (OCR A-level Biology)
GJHeducationGJHeducation

Ventilation and gas exchange in bony fish (OCR A-level Biology)

(2)
This lesson describes the roles of the buccal cavity, operculum, gill lamellae and countercurrent flow in ventilation and gas exchange in bony fish. The detailed PowerPoint and accompanying resources are part of the first lesson in a series of 2 that have been designed to cover the details of point 3.1.1 (f) of the OCR A-level Biology A specification. The second lesson in this series covers the mechanisms of ventilation and gas exchange in insects. The lesson has been specifically planned to prepare students for the content of module 3.1.2 (Transport in animals) and therefore begins with an introduction and a brief description of the single circulatory system of a fish as this has an impact on the delivery of deoxygenated blood to the lamellae. A quick quiz competition is used to introduce the operculum and then the flow of blood along the gill arch and into the primary lamellae and then into the capillaries in the secondary lamellae is described. The next task challenges the students to use their knowledge of module 2 to come up with the letters that form the key term, countercurrent flow. This is a key element of the lesson and tends to be a feature that is poorly understood, so extra time is taken to explain the importance of this mechanism. Students are shown two diagrams, where one contains a countercurrent system and the other has the two fluids flowing in the same direction, and this is designed to support them in recognising that this type of system ensures that the concentration of oxygen is always higher in the oxygenated water than in the blood in the lamellae. The remainder of the lesson focuses on the coordinated movements of the buccal-opercular pump to ensure that the water continues to flow over the gills. Current understanding and prior knowledge checks are included throughout the lesson and students can assess their progress against the mark schemes which are embedded into the PowerPoint
Control of heart action (CIE International A-level Biology)
GJHeducationGJHeducation

Control of heart action (CIE International A-level Biology)

(1)
This engaging and fully-resourced lesson looks at the myogenic nature of cardiac muscle and explores the roles of the SAN, AVN and Purkyne tissue in the initiation and control of heart action. The PowerPoint and accompanying resources have been designed to cover points 8.2 (d) of the CIE International A-level Biology specification. The lesson begins with the introduction of the SAN as the natural pacemaker and then time is given to study each step of the conduction of the impulse as it spreads away from the myogenic tissue in a wave of excitation. The lesson has been written to make clear links to the cardiac cycle and the structure of the heart and students are challenged on their knowledge of this system from topic 8.1. Moving forwards, students are encouraged to consider why a delay would occur at the AVN and then they will learn that the impulse is conducted along the Bundle of His to the apex so that the contraction of the ventricles can happen from the bottom upwards. The structure of the cardiac muscle cells is discussed and the final task of the lesson challenges the students to describe the conducting tissue, with an emphasis on the use of key terminology Due to the detailed nature of this lesson, it is estimated that it will take about 2 hours of A-level teaching time to cover the detail
The role of haemoglobin (CIE International A-level Biology)
GJHeducationGJHeducation

The role of haemoglobin (CIE International A-level Biology)

(1)
This engaging lesson looks at the role of haemoglobin in carrying oxygen and carbon dioxide. The PowerPoint has been designed to cover point 8.1 (f) of the CIE International A-level Biology specification and includes references to the role of carbonic anhydrase and the formation of haemoglobinic acid and carbaminohaemoglobin. The lesson begins with a version of the quiz show Pointless to introduce haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure and are challenged to use their prior knowledge of biological molecules to determine what this means for the protein. They will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. The remainder of the lesson looks at the different ways that carbon dioxide is transported around the body that involve haemoglobin. Time is taken to look at the dissociation of carbonic acid into hydrogen ions so that students can understand how this will affect the affinity of haemoglobin for oxygen in an upcoming lesson on the Bohr effect.
OCR Gateway A GCSE Combined Science P6 (Global Challenges) REVISION
GJHeducationGJHeducation

OCR Gateway A GCSE Combined Science P6 (Global Challenges) REVISION

(1)
An engaging lesson presentation (57 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within module P6 (Global challenges) of the OCR Gateway A GCSE Combined Science specification. The topics that are tested within the lesson include: Everyday motion Reaction time and thinking distance Braking distance and stopping distance Energy sources The National Grid Mains electricity Students will be engaged through the numerous activities including quiz rounds like “Can you go the DISTANCE” whilst crucially being able to recognise those areas which need further attention
Choosing reaction conditions (REVERSIBLE REACTIONS)
GJHeducationGJHeducation

Choosing reaction conditions (REVERSIBLE REACTIONS)

(2)
A thought-provoking lesson which explores why certain conditions are chosen for reversible reactions. Throughout this lesson, students are challenged to think about the topic in three ways. Of course, they have to consider the chosen conditions from a Scientific angle by knowing how temperature and pressure affect the position of the equilibrium. They must also think about the business (and health) side of the argument by recognising that increased pressures are both dangerous and expensive. Finally, they are taught recognise how the chosen conditions are in fact a compromise which has taken both the Science and business into account. Students are guided through the choice of conditions for the production of methanol so that they can apply their knowledge to the production of ammonia by the Haber process. This lesson has been designed for GCSE students.
IVF
GJHeducationGJHeducation

IVF

(1)
This is a fully-resourced lesson which looks at how IVF is used a treatment for infertility and considers the arguments for and against this process. The lesson includes an engaging, informative and discussion provoking lesson presentation and a pair of differentiated worksheets which challenge the mathematical skills of the students when looking at the % chance of multiple births from IVF. The lesson begins by getting the students to recognise the phrase “test tube baby” and then to link this to IVF. Extra pieces of interesting information are given throughout the lesson, such as the introduction of Louise Brown at this point. A step by step guide is used to go through the key steps in the process. Questions are continually posed to the students which get them to think and attempt to verbalise their answers such as when they are questioned whether men are needed for this process. There is a focus on key terminology throughout, such as haploid and zygote and genetic screening. Students will learn that multiple births are much more common in IVF births than from natural conception and then they will be asked to manipulate data in a mathematical task with some figures from a maternity ward. As these questions are quite difficult, this worksheet has been differentiated so that all students can access the learning. Although this has been written for GCSE students, it is suitable for use with older students.
Mutations & their effects (Edexcel Int. A-level Biology)
GJHeducationGJHeducation

Mutations & their effects (Edexcel Int. A-level Biology)

(1)
This fully-resourced lesson describes how the mutations that occur during DNA replication can effect a protein’s primary structure and lead to disorders. The engaging and detailed PowerPoint and accompanying resources have been designed to cover points 2.14 (i) & (ii) as detailed in the Edexcel International A-level Biology specification and focuses on the effects of substitutions, deletions and insertions and considers a real life biological example in sickle cell anaemia. In order to understand how a change in the base sequence can affect the order of the amino acids, students must be confident in their understanding and application of protein synthesis which was covered in the previous lessons. Therefore, the start of the lesson focuses on transcription and translation and students are reminder of how to use the codon table to identify amino acids. Moving forwards, a task called known as THE WALL is used to introduce to the names of three types of mutation whilst challenging the students to recognise three terms which are associated with the genetic code. The main focus of the lesson is base substitutions and how these mutations may or may not cause a change to the amino acid sequence. The students are challenged to use their knowledge of the degenerate nature of the genetic code to explain how a silent mutation can result. Students will learn that a substitution is responsible for the new allele that causes sickle cell anaemia and they are tested on their understanding through an exam-style question. As with all of the questions, a mark scheme is included in the PowerPoint which can be displayed to allow the students to assess their understanding. The rest of the lesson looks at base deletions and base insertions and students are introduced to the idea of a frameshift mutation. One particular task challenges the students to evaluate the statement that base deletions have a bigger impact on primary structure than base substitutions. This is a differentiated task and they have to compare the fact that the reading frame is shifted by a deletion against the change in a single base by a substitution
Edexcel GCSE Science Topic B9 REVISION
GJHeducationGJHeducation

Edexcel GCSE Science Topic B9 REVISION

(1)
An engaging lesson presentation (57 slides) and associated worksheets that uses a combination of exam questions, quick tasks and quiz competitions to help the students to assess their understanding of the topics found within Topic 9 (Ecosystems and material cycles) of the EDEXCEL GCSE Combined Science specification The topics that are tested within the lesson include: Levels of organisation Communities Interdependence in a community Determining the number of organisms in a given area Recycling materials Deforestation Global warming Students will be engaged through the numerous activities including quiz rounds like “Number CRAZY" whilst crucially being able to recognise those areas which need further attention
Making ethanol
GJHeducationGJHeducation

Making ethanol

(1)
This lesson has been designed for GCSE students and looks at the key details of two methods that are used to make ethanol, fermentation and the hydration of ethene. Some students may believe that the sole use of ethanol is for alcoholic drinks so the first part of the lesson uses a quick competition to introduce some additional uses. There are a number of these competitions that run during the lesson, in order to maintain engagement but also to introduce key terms and check on understanding in alternative forms. The details of each of the reactions are discussed and related topics are tested through questions and tasks, such as the students being challenged to write symbol equations and adding state symbols and to remember the identification test for carbon dioxide. The final part of the lesson plays one final competition, which is a battle between all of the students to spot which of the two reactions is being described by a clue.
AQA A-level Biology Topic 7 REVISION (Genetics, populations, evolution and ecosystems)
GJHeducationGJHeducation

AQA A-level Biology Topic 7 REVISION (Genetics, populations, evolution and ecosystems)

(0)
This is a fully-resourced REVISION resource that consists of an engaging PowerPoint (127 slides) and associated worksheets that challenge the students on their knowledge of topic 7 (Genetics, populations, evolution and ecosystems) of the AQA A-level Biology specification. A wide range of activities have been written into this resource to maintain motivation and these tasks include exam questions (with answers), understanding checks, differentiated tasks and quiz competitions. The lesson has been designed to cover as much of the content as possible, but the following sub-topics have been given particular attention: Genetic terminology Using genetic diagrams to calculate phenotypic ratios and percentages for the inheritance of a single gene Applying the Hardy-Weinberg principle Sex-linkage Codominance, multiple alleles and interpreting genetic trees Types of variation Ecological terminology Dihybrid inheritance Using the chi-squared test to determine significance Epistasis Succession Sampling to estimate populations and consider distribution The mathematic elements of this topic and specification are challenged throughout the resource and useful hints given to enable the students to pick up vital marks from questions on this topic. Due to the size of this resource, teachers may choose to use it over the course of a number of lessons and it is suitable for use at the end of topic 7, in the lead up to the mocks or in the lead up to the actual A-level exams.
Hardy-Weinberg principle (AQA A-level Biology)
GJHeducationGJHeducation

Hardy-Weinberg principle (AQA A-level Biology)

(0)
This fully-resourced lesson guides students through the use of the Hardy-Weinberg equation to calculate the frequency of alleles, genotypes and phenotypes in a population. Both the detailed PowerPoint and differentiated practice questions on a worksheet have been designed to cover the 2nd part of point 7.2 of the AQA A-level Biology specification which expects students to be able to use this mathematical model The lesson begins by looking at the equation and ensuring that students understand the meaning of each of the terms. The recessive condition, cystic fibrosis, is used as an example so that students can start to apply their knowledge and assess whether they understand which genotypes go with which term. Moving forwards, a step-by-step guide is used to show students how to answer a question. Tips are given during the guide so that common misconceptions and mistakes are addressed immediately. The rest of the lesson gives students the opportunity to apply their knowledge to a set of 3 questions, which have been differentiated so that all abilities are able to access the work and be challenged.
Homeostasis and negative feedback (AQA A-level Biology)
GJHeducationGJHeducation

Homeostasis and negative feedback (AQA A-level Biology)

(0)
This lesson describes how homeostasis in mammals involves control systems that maintain the internal environment within narrow limits. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the content of point 6.4.1 of the AQA A-level biology specification, which is the titled “Pripnciples of homeostasis and negative feedback”. As homeostasis is a topic met at GCSE, this lesson has been written to build on this knowledge as well as to check on their prior knowledge of earlier A-level topics such as osmosis when considering blood water potential and the use of glucose as a respiratory substrate. Discussion points are written into the lesson at regular intervals to encourage the students to consider why a particular process or method takes place and understanding checks allow them to assess their progress. Students will recall how body temperature, blood water potential and blood glucose concentration are maintained within restricted limits and the importance of these systems are looked into in detail. Time is taken to consider the importance of maintaining these aspects, specifically with relation to the activity of enzymes. As such, students will also discuss how the pH of the blood is maintained. The key components of the control system are recalled and then time is taken to focus on the cell signalling that occurs between the coordination centre and the effectors. Students will learn to associate the response with either the use of the neuronal or hormonal system. The final part of the lesson looks at the importance of negative feedback in reversing the change in order to bring the aspect back to the optimum and the added degree of control which this provides. Positive feedback is also briefly mentioned at the end.
Efficiency
GJHeducationGJHeducation

Efficiency

(1)
An engaging lesson presentation (28 slides) and accompanying worksheet, which together look at how to calculate efficiency and explores how efficiency can be increased by reducing the ways that energy is transferred to less useful stores. The lesson begins by looking at the key term, dissipated, and ensuring that students understand that energy being dissipated to a thermal energy store is one of the main reasons why efficiency will be low. Moving forwards, students are introduced to the equation to calculate efficiency and shown how to leave the answer as a decimal or percentage. Mathematical skills are challenged when calculating the efficiency as a number of units have to be converted. The rest of the lesson looks at a range of methods that can be used to reduce losses. Students will work with the teacher to understand how lubrication works and then a homework task gets them to explore how insulation in homes reduces heat losses. This lesson has been designed for GCSE students.
Moles REVISION (GCSE)
GJHeducationGJHeducation

Moles REVISION (GCSE)

(1)
This is an engaging revision lesson which uses a range of exam questions, understanding checks, quick differentiated tasks and quiz competitions to allow students to assess their knowledge of the topic of moles and related topics as covered in the GCSE Chemistry and GCSE Combined Science courses. An understanding of moles and their associated calculations is critical for the success of a student in these two courses. The following topics are covered in this revision lesson: Avogadro’s law and constant Mole calculations involving Avogadro’s constant Mole calculations involving the formula, moles = mass x molar mass Mole calculations involving the constant and the formula Moles in balanced symbol equations and identifying molar ratios of reactants or reactants to products Calculating masses in reactions Gas calculations (molar volume) Concentration of solutions (in mol per decimetre cubed) Students will be engaged through the range of activities which includes quiz competitions such as “Fill the VOID” where students have to complete some equations which have pieces missing and also “In the BALANCE” where students have to balance equations in order to work out the number of moles on each side of the reaction. This lesson can be used at any time during the year as a revision material, in the lead up to mocks or as a final revision lesson before the GCSE terminal exams.
The eye as a sense organ (CIE IGCSE Biology)
GJHeducationGJHeducation

The eye as a sense organ (CIE IGCSE Biology)

(1)
This resource contains an engaging and detailed lesson PowerPoint and accompanying worksheets which cover the content of both the Core and Supplement sections of topic 14.2 (Sense organs) as detailed in the CIE IGCSE Biology specification. Understanding checks are included at regular points throughout the lesson to allow the students to self-assess their progress and quiz competitions like SAY WHAT YOU SEE and LOOK into these WORDS introduce key terms in a fun and memorable way. The following content is covered across this resource: The function of the cornea, retina, lens, optic nerve and iris Identifying these structures and the pupil, fovea and blind spot on a diagram The roles of the rods and cones in the retina and their distribution Explain the pupil reflex in terms of the antagonistic action of the muscles in the iris Accommodation to view near and distant objects Sense organs and the stimuli to which they respond This lesson has been designed for GCSE-aged students who are studying the CIE IGCSE Biology course but is suitable for both younger and older students who are studying this organ
Genetic fingerprinting (AQA A-level Biology)
GJHeducationGJHeducation

Genetic fingerprinting (AQA A-level Biology)

(0)
This fully-resourced lesson explains how genetic fingerprinting can be used to analyse DNA fragments and explores its applications in forensic science and medical diagnosis. The engaging and detailed PowerPoint and accompanying resource have been written to cover all of point 8.4.3 of the AQA A-level Biology specification Each step of the genetic fingerprinting process is covered and time is taken to ensure that key details are understood. Students will be introduced to VNTRs and will come to recognise their usefulness in human identification as a result of the variability between individuals. Moving forwards, the involvement of the PCR and restriction enzymes are discussed and students are challenged on their knowledge of this process and these substances as they were encountered in a previous sub-topic. The main section of the lesson focuses on the use of gel electrophoresis to separate DNA fragments (as well as proteins) and the key ideas of separation due to differences in base pair length or molecular mass are discussed and explained. As well as current understanding checks, an application question involving Huntington’s disease is used to challenge their ability to apply their knowledge of the process to an unfamiliar situation. The remainder of the lesson describes how the DNA is transferred to a membrane and hybridisation probes are used to create a pattern on the X-ray film. Time has been taken to make continuous links to the previous lessons in topic 8 as well as those from topic 4 where DNA, RNA and protein synthesis were introduced.
Active loading & translocation (CIE International A-level Biology)
GJHeducationGJHeducation

Active loading & translocation (CIE International A-level Biology)

(1)
This lesson describes the active loading of sucrose at the source and movement by mass flow to the sink down the hydrostatic pressure gradient. Both the detailed PowerPoint and accompanying resources have been designed to cover points 7.2 (g, h & i) as detailed in the CIE International A-level Biology specification. The lesson begins by challenging the students to recognise the key term translocation when it is partially revealed and then the rest of the lesson focuses on getting them to understand how this process involves the mass flow of assimilates down the hydrostatic pressure gradient from the source to the sink. It has been written to tie in with 7.1 (d) where the structure of the phloem tissue was initially introduced and the students are continually challenged on their prior knowledge. A step-by-step guide is used to describe how sucrose is loaded into the phloem at the source by the companion cells. Time is taken to discuss key details such as the proton pumping to create the proton gradient and the subsequent movement back into the cells by facilitated diffusion using co-transporter proteins. Students will learn that the hydrostatic pressure at the source is high, due to the presence of the water and sucrose as cell sap, and that this difference when compared to the lower pressure at the sink leads to the movement along the phloem. A number of quick quiz rounds are included in the lesson to maintain engagement and to introduce key terms and the lesson concludes with a game of SOURCE or SINK as students have to identify whether a plant structure is one or the other (or both)
Light-dependent reaction of photosynthesis (AQA A-level Biology)
GJHeducationGJHeducation

Light-dependent reaction of photosynthesis (AQA A-level Biology)

(0)
This detailed lesson describes the light-dependent reaction of photosynthesis and focuses on the transfer of electrons and proton pumping. The PowerPoint and accompanying resources have been designed to cover the first part of point 5.1 of the AQA A-level Biology specification and has been planned to link with the previous lesson on the structure of the chloroplast and to prepare the students for the next lesson on the light-independent reaction. The light-dependent reaction is a topic which students tend to find difficult so this lesson has been planned to walk them through all of the key details. Time is taken to describe the roles of the major protein complexes that are embedded in the thylakoid membrane and this includes the two photosystems, the cytochrome proton pump and ATP synthase. A series of exam-style questions have been written that link to other biological topics in this course such as cell structure and membrane transport as well as application questions to challenge them to apply their understanding. Some of these resources have been differentiated to allow students of differing abilities to access the work and to be pushed at the same time. Students will learn that there are two pathways that the electron can take from PSI and at the completion of the two tasks which describe each of these pathways, they will understand how ATP is generated in non-cyclic and cyclic fashion. The final task of the lesson asks them to compare these two forms of photophosphorylation to check that they understand when photolysis is involved and reduced NADP is formed. Due to the detail included in this lesson, it is estimated that it will take in excess of 2.5 hours of allocated A-level teaching time to complete.
Haemoglobin and the transport of oxygen (AQA A-level Biology)
GJHeducationGJHeducation

Haemoglobin and the transport of oxygen (AQA A-level Biology)

(0)
This engaging lesson looks at the structure of the quaternary protein, haemoglobin, and describes its role with red blood cells in the transport of oxygen. The PowerPoint has been designed to cover the first part of point 3.4.1 of the AQA A-level Biology specification and explains how the cooperative nature of binding results in a loading of each molecule with 4 oxygen molecules and describes how it is unloaded at the respiring cells too. The lesson begins with a version of the quiz show Pointless to introduce haemotology as the study of the blood conditions. Students are told that haemoglobin has a quaternary structure and are challenged to use their prior knowledge of biological molecules to determine what this means for the protein. They will learn that each of the 4 polypeptide chains contains a haem group with an iron ion attached and that it is this group which has a high affinity for oxygen. Time is taken to discuss how this protein must be able to load (and unload) oxygen as well as transport the molecules to the respiring tissues. Students will plot the oxyhaemoglobin dissociation curve and the S-shaped curve is used to encourage discussions about the ease with which haemoglobin loads each molecule. Students will learn that a conformational change upon binding of the first oxygen leads to it being easier to bind future oxygens and that this is known as cooperative binding. This lesson has been written to tie in with the other uploaded lesson on the Bohr effect.
Distance-time graphs
GJHeducationGJHeducation

Distance-time graphs

(1)
A highly engaging and information lesson presentation (46 slides) which guides students through the steps needed to construct an accurate distance-time graph and then teaches them how to interpret the motions that are shown by the different lines. The lesson challenges the students to work out the type of graph that should be used to present the data and to suggest which factor from the blank table should go on the x-axis. Using the results that they obtain, a step-by-step guide is used to walk students through constructing the graph. This includes deciding on scales to ensure they are even and make the most of the available paper. Student will see the four key terms of motion associated with these graphs (acceleration, deceleration, constant speed and stationary) and will be able to use their graph to work out which lines go with which motion. Moving forwards, students will be shown how to calculate speed from the graph. There are progress checks throughout the lesson so that students can assess their understanding of the topic. This lesson has been designed for GCSE students but is perfectly suitable for KS3 students too.