A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
A Science teacher by trade, I've also been known to be found teaching Maths and PE! However, strange as it may seem, my real love is designing resources that can be used by other teachers to maximise the experience of the students. I am constantly thinking of new ways to engage a student with a topic and try to implement that in the design of the lessons.
All 9 lessons included in this bundle are filled with a variety of tasks to maintain engagement whilst covering the detailed content of module 5.1.2 of the OCR A-level biology specification. There are also multiple understanding checks and prior knowledge checks, with answers embedded into the PowerPoint, which allow the students to assess their progress against the current topic and test their ability to make links to previously covered content. This module titled “Excretion as an example of homeostatic control”, considers the removal of the products of cell metabolism and explores the role of the liver, kidneys (and skin) in this process.
The functions of the liver and structure of the kidney lessons have been uploaded for free, so you could download these first if you would like to view the quality of this bundle.
The specification points not directly covered by the lessons in this bundle are:
(b) (ii)
[c) (ii)
[c] (iii)
(f)
All 7 of the lessons in this bundle are fully-resourced and have been designed to cover the content as detailed in topic 5.2 (Respiration) of the AQA A-Level Biology specification. The specification points that are covered within these lessons include:
Respiration produces ATP
Glycolysis as the first stage of aerobic and anaerobic respiration
The phosphorylation of glucose and the production and oxidation of triose phosphate
The production of lactate or ethanol in anaerobic conditions
The Link reaction
The oxidation-reduction reactions of the Krebs cycle
The synthesis of ATP by oxidative phosphorylation
The chemiosmotic theory
Lipids and proteins as respiratory substrates
The lessons have been written to include a wide range of activities and numerous understanding and prior knowledge checks so students can assess their progress against the current topic as well as be challenged to make links to other sub-topics within this topic and earlier topics
If you would like to see the quality of the lessons, download the anaerobic respiration and oxidative phosphorylation lessons as these have been uploaded for free
This fully-resourced lesson describes how the eukaryotic cells of complex multicellular organisms become specialised for specific functions. The detailed and engaging PowerPoint and accompanying resources have been designed to cover the 3rd part of point 2.1.1 of the AQA A-level Biology specification and also describes how these specialised cells are organised into tissues, organs and organ systems.
The start of the lesson focuses on the difference in the SA/V ratio of an amoeba and a human in order to begin to explain why the process of differentiation is critical for multicellular organisms. Students will discover that a zygote is a stem cell which can express all of the genes in its genome and divide by mitosis. Time is then taken to introduce gene expression as this will need to be understood in the later topics of the course. Moving forwards, the lesson uses the process of haematopoiesis from haematopoietic stem cells to demonstrate how the red blood cell and neutrophil differ significantly in structure despite arising from the same cell along the same cell lineage. A series of exam-style questions will not only challenge their knowledge of structure but also their ability to apply this knowledge to unfamiliar situations. These differences in cell structure is further exemplified by the epithelial cells of the respiratory tract and students will understand why the shape and arrangement of these cells differ in the trachea and alveoli in line with function. The link between specialised cells and tissues is made at this point of the lesson with these examples of epithelium and students will also see how tissues are grouped into organs and then into organ systems.
The remainder of the lesson focuses on specialised plant cells and the differing shapes and features of the palisade and spongy mesophyll cells and the guard cells are covered at length and in detail. Step by step guides will support the students so that they can recognise the importance of the structures and links are made to upcoming topics such as diffusion, active transport and osmosis so that students are prepared for these when covered in the future.
This lesson has been written to continually tie in with the previous two lessons in this specification point which are uploaded under the titles of the structure of eukaryotic animal and plant cells.
This revision lesson has been designed to challenge the students on their use of a range of mathematical skills that could be assessed on the AQA GCSE Combined Science papers. The mathematical element of the AQA GCSE Combined Science course has increased significantly since the specification change and therefore success in those questions which involve the use of maths can prove to be the difference between one grade and another or possibly even more.
The engaging PowerPoint and accompanying resources contain a wide range of activities that include exam-style questions with displayed mark schemes and explanations so that students can assess their progress. Other activities include differentiated tasks, class discussion points and quick quiz competitions such as “YOU DO THE MATH” and “FILL THE VOID”.
The following mathematical skills (in a scientific context) are covered in this lesson:
The use of Avogadro’s constant
Rearranging the formula of an equation
Calculating the amount in moles using mass and relative formula mass
Calculating the relative formula mass for formulae with brackets
Using the Periodic Table to calculate the number of sub-atomic particles in atoms
Changes to electrons in ions
Balancing chemical symbol equations
Converting between units
Calculating concentration in grams per dm cubed and volumes of solutions
Calculating size using the magnification equation
Using the mean to estimate the population of a sessile species
Calculating percentages to prove the importance of biodiversity
Calculating percentage change
Calculating the acceleration from a velocity-time graph
Recalling and applying the Physics equations
Understanding prefixes that determine size
Leaving answers to significant figures and using standard form
Helpful hints and step-by-step guides are used throughout the lesson to support the students and some of the worksheets are differentiated two ways to provide extra assistance.
Due to the detail of this lesson, it is estimated that it will take in excess of 3 hours of GCSE teaching time to cover the tasks and for this reason it can be used over a number of lessons as well as during different times of the year for revision.
This bundle of 9 revision lessons covers the specification content in all of the topics of the Pearson Edexcel GCSE Biology 9-1 specification.
Topic 1: Key concepts in Biology
Topic 2: Cells and control
Topic 3: Genetics
Topic 4: Natural selection and modification
Topic 5: Health, disease and the development of medicines
Topic 6: Plant structures and functions
Topic 7: Animal coordination, control and homeostasis
Topic 8: Exchange and transport in animals
Topic 9: Ecosystems and material cycles
All of the lessons have been written to include a range of activities to engage the students whilst enabling them to assess and evaluate their content knowledge so that they recognise those areas which will need further attention prior to the exams.
This revision lesson has been filled with activities that will challenge the students on their knowledge and understanding of the content detailed in topic 8 (Energy - forces doing work) of the Pearson Edexcel GCSE Physics specification. The wide range of activities in the engaging PowerPoint and accompanying resources will check on the knowledge of this topic and allow the students to recognise those areas which need further attention before the mock or terminal GCSE exams.
This resource has been designed to cover as much of topic 8 as possible but the following points have received particular attention:
Describe how to measure the work done by a force
Understand that work done is equal to energy transferred
Recall and use the equation to calculate work done
Calculate the changes in energy involved when a system is changed by work done by forces
Recall and use the equation to calculate gravitational potential energy
Recall and use the equation to calculate kinetic energy
Explain how energy is dissipated so that it is stored in less useful ways
Define power as the rate at which energy is transferred and that 1 watt is equal to one joule per second
Recall and use the equation to calculate power
Recall and use the equation to calculate efficiency
The mathematical content of this specification and this topic is heavy and in line with this lots of calculated-based tasks are included and all of the answers are explained in steps so students can assess their progress
The main task of the lesson which challenges students to use the principle of moments has been differentiated so that differing abilities can access the work
This is a fully-resourced lesson which uses exam-style questions, quiz competitions, quick tasks and discussion points to challenge students on their understanding of topics B1 - B5, that will assessed on PAPER 1. It has been specifically designed for students on the Pearson Edexcel GCSE Combined Science course who will be taking the FOUNDATION TIER examinations but is also suitable for students taking the higher tier who need to ensure that the fundamentals are known and understood.
The lesson has been written to take place at the local hospital where the students have to visit numerous wards and clinics and the on-site pharmacy so that the following sub-topics can be covered:
Cancer as the result of uncontrolled cell division
The production of gametes by meiosis
Mitosis and the cell cycle
Sex determination
The difference between communicable and non-communicable diseases
The pathogens that spread communicable diseases
Identification of communicable diseases
Treating bacterial infections with antibiotics
Evolution of antibiotic resistance in bacteria
Vaccinations
Genetic terminology
Genetic diagrams
Structures involved in a nervous reaction
A Reflex arc
Risk factors
Chemical and physical defences
Osmosis and percentage gain and loss
Fossils as evidence for human evolution
In order to maintain challenge whilst ensuring that all abilities can access the questions, the majority of the tasks have been differentiated and students can ask for assistance sheets when they are unable to begin a question. Step-by-step guides have also been written into the lesson to walk students through some of the more difficult concepts such as genetic diagrams and evolution by natural selection.
Due to the extensiveness of this revision lesson, it is estimated that it will take in excess of 3 teaching hours to complete the tasks and therefore this can be used at different points throughout the duration of the course as well as acting as a final revision before the PAPER 1 exam.
This lesson uses 17 multiple-choice questions to challenge students to apply their understanding to the calculation sections of the course. The PowerPoint and accompanying resources are designed to act as revision during the final weeks leading up to the AQA GCSE Combined chemistry exams and the following topics are covered:
Atoms and ions
Isotopes
Concentration of solutions
Mole calculations using Avogadro’s constant
Calculating relative formula mass
Mole calculations using mass and relative formula mass
Calculating masses in reactions
Calculating energy changes in reactions
Calculating the mean rate of reaction
All 17 questions have answers embedded into the PowerPoint along with explanations and are followed by additional tasks to further check understanding if it was initially limited.
This is a fully-resourced lesson that covers the details of specification point 5.1.2 (e) of the OCR A-level Biology A specification which states that students should be able to demonstrate and apply an understanding of the effects of kidney failure and its potential treatments. This lesson consists of an engaging PowerPoint (55 slides) and associated differentiated worksheets that look at the diagnosis of a number of different kidney-related conditions and the potential treatments for kidney failure. This lesson is designed to get the students to take on the numerous roles of a doctor who works in the renal ward which include testing, diagnosis and treatment. Having obtained measurements by GFR and results by taking urine samples, hey are challenged to use their knowledge of the function of the kidney to study urine samples (and the accompanying GP’s notes) to diagnose one of four conditions. They then have to write a letter to the patient to explain how they made this diagnosis, again focusing on their knowledge of the structure and functions of the Bowman’s capsule and PCT. The rest of the lesson focuses on haemodialysis, peritoneal dialysis and kidney transplant. There are regular progress checks throughout the lesson so that students can assess their understanding and there are a number of homework activities included in the lesson.
This lesson is designed for A-level students who are studying the OCR A-level Biology specification and ties in nicely with the other uploaded lessons on this organ which include the structure and function of the nephron, ultrafiltration, selective reabsorption and osmoregulation.
This bundle of 6 lessons covers a lot of the content in Module 6.1.3 (Manipulating genomes) of the OCR A-level Biology A specification and includes an end of module revision lesson. The topics covered within these lessons include:
The principles of DNA sequencing
The development of new DNA sequencing techniques
The principles of the PCR and its applications
The principles and uses of electrophoresis to separate DNA fragments and proteins
The principles and techniques of genetic engineering
6.1.3 REVISION
All of these lesson presentations and accompanying resources are detailed and engaging and contain regular progress checks to allow the students to constantly assess their understanding.
A fully-resourced lesson which looks at the meaning of the rate of reaction and guides students through calculating both the mean and instantaneous rate of reaction. The lesson includes a concise lesson presentation (19 slides) and a question worksheet which is differentiated two ways.
The lesson begins by challenging the students to suggest the missing factor in the rate of reaction equation so they can learn that either the mass of a reactant or a mass of a product could be used. Links are made to practical skills as students will understand that if a product is in the gaseous form, the volume produced within a set time will enable the rate to be calculated. Worked examples are used to show the students how to calculate the mean rate of reaction and then the instantaneous using a tangent. The rest of the lesson involves collecting data from an experiment to calculate the rate of reaction. The questions associated with the practical have been differentiated so students who need assistance can still access the learning.
This lesson has been written for GCSE students
This fully-resourced lesson focuses on the events of meiosis which specifically contribute to genetic variation. The detailed PowerPoint and accompanying resources have been designed to cover the 4th and final part of point 4.3 of the AQA A-level Biology specification which states that students should be able to describe how meiosis produces daughter cells that are genetically different from each other.
In order to understand how the events of meiosis like crossing over and random assortment and independent segregation can lead to variation, students need to be clear in their understanding that DNA replication in interphase results in homologous chromosomes as pairs of sister chromatids. Therefore the beginning of the lesson focuses on the chromosomes in the parent cell and this first part of the cycle and students will be introduced to non-sister chromatids and the fact that they may contain different alleles which is important for the exchange that occurs during crossing over. Time is taken to go through this event in prophase I in a step by step guide so that the students can recognise that the result can be new combinations of alleles that were not present in the parent cell. Moving forwards, the lesson explores how the independent segregation of chromosomes and chromatids during anaphase I and II results in genetically different gametes. The final part of the lesson looks at the use of a mathematical expression to calculate the possible combinations of alleles in gametes as well as in a zygote following the random fertilisation of haploid gametes. Understanding and prior knowledge checks are interspersed throughout the lesson as well as a series of exam questions which challenge the students to apply their knowledge to potentially unfamiliar situations.
Due to the detail of this lesson, it is estimated that this will take about 2 hours of A-level teaching time to deliver
This lesson explains how to calculate the mitotic index and then explores what a high value may indicate about the tissue that was sampled. The PowerPoint and accompanying resources are part of the 2nd lesson in a series of 3 which have been planned to cover the content of point 2.2 of the AQA A-level biology specification.
As shown in the cover image, the lesson begins with a bit of fun, as the students are challenged to use three clues to identify three uses of the term index in biology. They’ll learn that the index of diversity is covered in a topic 4 lesson and that this lesson focuses on the mitotic index. The students are challenged on their knowledge of the mitotic cell cycle throughout the lesson and one of these questions is used to introduce the meaning of the index and the formula. A series of exam-style questions challenge them to apply their understanding, and the answers are embedded into the PowerPoint to enable the students to assess their progress. Moving forwards, the different meanings of high values are considered, including growing and repairing tissues, and then to explain how an elevated mitotic index can indicate that cell division has become uncontrolled. This prepares students for the next lesson where tumour formation and cancer will be covered.
As the 1st topic on the Pearson Edexcel A-level Biology A (Salters Nuffield) course, the Lifestyle, health and risk topic is extremely important to introduce the students to the detail needed for success in this subject. Extensive planning has gone into all 10 lessons included in this bundle to motivate and engage the students whilst covering the following specification points:
The importance of water
The structure and function of blood vessels
The cardiac cycle and the relationship between the structure and operation of the heart to its function
The course of events that lead to atherosclerosis
The blood clotting process
The differences between monosaccharides, disaccharides and polysaccharides
The structure and role of the monosaccharides
Understand how monosaccharides join to form disaccharides and polysaccharides through condensation reactions and are split through hydrolysis reactions
The relationship between the structure and roles of the polysaccharides
The synthesis of a triglyceride by the formation of ester bonds between glycerol and fatty acids
The difference between saturated and unsaturated lipids
The PowerPoints and accompanying resources contain a wide variety of tasks which include exam-style questions with mark schemes, guided discussion points and quick quiz competitions.
This lesson bundle contains 9 lesson PowerPoints and their accompanying resources which have been intricately planned to deliver the detailed content of topic 6 of the Pearson Edexcel A-level Biology A (Salters Nuffield) specification and to make links to the 5 previously covered topics. In addition to the detailed content, each lesson contains exam-style questions with mark schemes embedded into the PowerPoint, differentiated tasks, guided discussion points and quick quiz competitions to introduce key terms and values in a fun and memorable way.
The following specification points are covered by the lessons in this bundle:
DNA can be amplified using the PCR
Comparing the structure of bacteria and viruses
Understand how Mycobacterium tuberculosis and human immunodeficiency virus infact human cells
The non-specific responses of the body to infection
The roles of antigens and antibodies in the body’s immune response
The differences in the roles of the B and T cells in the body’s immune response
Understand how one gene can give rise to more than one protein
The development of immunity
The major routes that pathogens may take when entering the body
The role of barriers in protecting the body from infection
The difference between bacteriostatic and bactericidal antibiotics
If you would like to sample the quality of the lessons in this bundle, then download the immune response and post-transcriptional changes lessons as these have been uploaded for free
This lesson describes the development and spread of antibiotic resistance in bacteria and discusses the difficulties in controlling this spread. The PowerPoint and accompanying worksheet have been designed to cover specification points 6.4 (i & ii) of the Edexcel A-level Biology B specification
President Trump’s error ridden speech about antibiotics is used at the beginning of the lesson to remind students that this is a treatment for bacterial infections and not viruses as he stated. Moving forwards, 2 quick quiz competitions are used to introduce MRSA and then to get the students to recognise that they can use this abbreviation to remind them to use mutation, reproduce, selection (and survive) and allele in their descriptions of the development of resistance by evolution through natural selection. The main task of the lesson challenges the students to form a description to explain how this strain of bacteria developed resistance to methicillin, making use of the five key terms emphasised above. Moving forwards, there is a focus on the hospital as the common location for MRSA infections and students will recognise that this opportunistic pathogen can infect through open wounds to cause sepsis and potentially death. Figures from infections and deaths in hospitals in the US are used to increase the relevance and students will learn how a MRSA prevention program in VHA facilities includes screening of surgery patients to try to reduce its impact. The lesson concludes with a discussion about other methods that can be used by hospitals and general practitioners to reduce the spread of MRSA and to try to prevent the development of resistance in other strains.
This fully-resourced lesson explores the inheritance of sex-linked diseases in humans and then challenges the students to apply their knowledge to examples in other animals. The detailed PowerPoint and associated differentiated resources have been designed to cover the part of point 7.1 of the AQA A-level specification which states that students should be able to use fully-labelled genetic diagrams to predict the results of crosses involving sex-linkage.
Key genetic terminology is used throughout and the lesson begins with a check on their ability to identify the definition of homologous chromosomes. Students will recall that the sex chromosomes are not fully homologous and that the smaller Y chromosome lacks some of the genes that are found on the X. This leads into one of the numerous discussion points, where students are encouraged to consider whether females or males are more likely to suffer from sex-linked diseases. In terms of humans, the lesson focuses on haemophilia and red-green colour blindness and a step-by-step guide is used to demonstrate how these specific genetic diagrams should be constructed and how the phenotypes should then be interpreted. The final tasks of the lesson challenge the students to carry out a dihybrid cross that involves a sex-linked disease and an autosomal disease before applying their knowledge to a question about chickens and how the rate of feather production in chicks can be used to determine gender.
All of the tasks are differentiated so that students of differing abilities can access the work and all exam questions have fully-explained, visual markschemes to allow them to assess their progress and address any misconceptions
A detailed and engaging lesson presentation (52 slides) and accompanying worksheet that looks at competition between organisms and the different types of relationships that exist as a result of this interaction. The lesson begins by looking at the meaning of the biological term, "competition", and then introduces this when it occurs between the same species and different species. Students are challenged to consider the different resources that animals compete for before an activity based competition is used to get them to recognise how this competition can cause changes to the population size.
Moving forwards, students will meet the three main types of ecological relationship and look at them in greater detail, with predation being a main focus.
There are regular progress checks throughout the lesson (with displayed answers) so that students can assess their understanding.
This lesson has been designed for GCSE students but can be used with more-able KS3 students who are looking at ecosystems and the relationships that exist within them
An informative and engaging lesson (46 slides) that looks at the topic of immobilised enzymes and focusses on ensuring that students understand this topic around three main ideas. By the end of the lesson, students will be able to explain why immobilised enzymes are used, describe the different methods by which they are produced and describe some of their uses in biotechnology. Time is taken throughout the lesson to make sure that students understand the disadvantages associated with this process and that they are able to explain the specific limitations of each method.
This lesson has been designed for students studying A-level Biology